Câu hỏi:

11/07/2024 1,378 Lưu

Một lớp học có 36 học sinh, trong đó 20 người thích bóng rổ, 14 người thích bóng bàn và 10 người không thích môn nào trong hai môn thể thao này.

Có bao nhiêu học sinh của lớp thích bóng rổ nhưng không thích bóng bàn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Kí hiệu A là tập hợp các học sinh của lớp, B = {x A | x thích bóng rổ},

C = {x A | x thích bóng bàn}, D = {x A | x không thích môn nào trong hai môn}.

Theo giả thiết, ta có: n(A) = 36, n(B) = 20, n(C) = 14 và n(D) = 10.

Có bao nhiêu học sinh của lớp thích bóng rổ nhưng không thích bóng bàn? (ảnh 1)

Số học sinh thích bóng rổ nhưng không thích bóng bàn là:

n(B \ C) = n(B) – n(B C) = 20 – 8 = 12 (bạn).   

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Ta có {0} là một tập hợp, 0 là một phần tử nên viết 0 = {0} là sai, do đó đáp án A sai.

0 là một phần tử của tập hợp {0}, do đó ta viết 0 {0} là đúng nên đáp án B đúng.

Kí hiệu dùng để chỉ mối quan hệ giữa các tập hợp nên đáp án C sai.

là một tập hợp nên đáp án D sai.

Lời giải

Kí hiệu A là tập hợp các học sinh của lớp, B = {x A | x thích bóng rổ},

C = {x A | x thích bóng bàn}, D = {x A | x không thích môn nào trong hai môn}.

Theo giả thiết, ta có: n(A) = 36, n(B) = 20, n(C) = 14 và n(D) = 10.

Một lớp học có 36 học sinh, trong đó 20 người thích bóng rổ, 14 người thích  (ảnh 1)

Số học sinh thích một trong hai môn là:

n(B C) = n(A) – n(D) = 36 – 10 = 26 (bạn).

Số học sinh thích cả hai môn thể thao trên là:

n(B C) = n(B) + n(C) – n(B C) = 20 + 14 – 26 = 8 (bạn).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP