Câu hỏi trong đề: Giải SBT Toán 10 Bài 1. Hàm số và đồ thị có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Với 3x – 1 ≥ 0 hay x ≥ \(\frac{1}{3}\), ta có: |3x – 1| = 3x – 1.
Với 3x – 1 < 0 hay x < \(\frac{1}{3}\), ta có: |3x – 1| = – (3x – 1) = – 3x + 1.
Khi đó ta có: \(f\left( x \right) = \left\{ \begin{array}{l}3x - 1\,\,\,\,\,\,khi\,\,x \ge \frac{1}{3}\\ - 3x + 1\,\,\,khi\,x < \frac{1}{3}\end{array} \right.\).
Ta xét sự đồng biến, nghịch biến của hàm số g(x) = 3x – 1 trên khoảng \(\left( {\frac{1}{3};\, + \infty } \right)\) và của hàm số h(x) = – 3x + 1 trên khoảng \(\left( { - \infty ;\,\,\frac{1}{3}} \right)\).
+ Lấy hai số x1, x2 tùy ý thuộc khoảng \(\left( {\frac{1}{3};\, + \infty } \right)\) sao cho x1 < x2:
Ta có: f(x1) – f(x2) = (3x1 – 1) – (3x2 – 1) = 3(x1 – x2) < 0 (do x1 < x2 nên x1 – x2 < 0).
Suy ra f(x1) < f(x2).
Vậy hàm số g(x) đồng biến trên \(\left( {\frac{1}{3};\, + \infty } \right)\) hay f(x) đồng biến trên \(\left( {\frac{1}{3};\, + \infty } \right)\). (1)
+ Lấy hai số x3, x4 tùy ý thuộc khoảng \(\left( { - \infty ;\,\,\frac{1}{3}} \right)\) sao cho x3 < x4:
Ta có: f(x3) – f(x4) = (– 3x3 + 1) – (– 3x4 + 1) = 3(x4 – x3) > 0 (do x3 < x4 nên x4 – x3 > 0).
Suy ra f(x3) > f(x4).
Vậy hàm số h(x) nghịch biến trên \(\left( { - \infty ;\,\,\frac{1}{3}} \right)\) hay f(x) nghịch biến khoảng \(\left( { - \infty ;\,\,\frac{1}{3}} \right)\). (2)
Từ (1) và (2) suy ra hàm số f(x) nghịch biến trên khoảng \(\left( { - \infty ;\,\,\frac{1}{3}} \right)\) và đồng biến trên khoảng \(\left( {\frac{1}{3};\, + \infty } \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Tập xác định của hàm số là: D = ℝ \ {– 5}.
+ Xét khoảng (– ∞; – 5):
Lấy hai số x1, x2 tùy ý thuộc (– ∞; – 5) sao cho x1 < x2.
Ta có: \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = \frac{1}{{ - {x_1} - 5}} - \frac{1}{{ - {x_2} - 5}}\)\( = \frac{{ - {x_2} - 5 - \left( { - {x_1} - 5} \right)}}{{\left( { - {x_1} - 5} \right)\left( { - {x_2} - 5} \right)}}\)\( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\).
Vì x1, x2 ∈ (– ∞; – 5) nên x1 + 5 < 0 và x2 + 5 < 0.
Lại có: x1 < x2 nên x1 – x2 < 0.
Do đó, f(x1) – f(x2) \( = \frac{{{x_1} - {x_2}}}{{\left( {{x_1} + 5} \right)\left( {{x_2} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– ∞; – 5). (1)
+ Xét khoảng (– 5; + ∞):
Lấy hai số x3, x4 tùy ý thuộc (– 5; + ∞) sao cho x3 < x4.
Ta có: \(f\left( {{x_3}} \right) - f\left( {{x_4}} \right) = \frac{1}{{ - {x_3} - 5}} - \frac{1}{{ - {x_4} - 5}}\)\( = \frac{{ - {x_4} - 5 - \left( { - {x_3} - 5} \right)}}{{\left( { - {x_3} - 5} \right)\left( { - {x_4} - 5} \right)}}\)\( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\).
Vì x3, x4 ∈ (– 5; + ∞) nên x3 + 5 > 0 và x4 + 5 > 0.
Lại có: x3 < x4 nên x3 – x4 < 0.
Do đó, f(x3) – f(x4) \( = \frac{{{x_3} - {x_4}}}{{\left( {{x_3} + 5} \right)\left( {{x_4} + 5} \right)}}\) < 0 hay f(x1) < f(x2).
Vậy hàm số đồng biến trên khoảng (– 5; + ∞). (2)
Từ (1) và (2) suy ra hàm số đã cho đồng biến trên các khoảng (– ∞; – 5) và (– 5; + ∞).
Lời giải
Hướng dẫn giải
Hai đường biểu diễn ở Hình b và Hình c không phải là đồ thị hàm số vì ứng với một giá trị của x, có đến hai (hay nhiều) giá trị khác nhau của y (quan sát trên hình sau).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.