Câu hỏi:
12/07/2024 3,424Tìm công thức hàm số bậc hai biết:
Đồ thị hàm số đi qua 3 điểm A(1; – 3), B(0; – 2), C(2; – 10).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Hàm số bậc hai có công thức tổng quát: y = ax2 + bx + c (a ≠ 0).
Đồ thị hàm số đi qua điểm A(1; – 3) nên: – 3 = a . 12 + b . 1 + c hay a + b + c = – 3. (1)
Đồ thị hàm số đi qua điểm B(0; – 2) nên: – 2 = a . 02 + b . 0 + c hay c = – 2.
Đồ thị hàm số đi qua điểm C(2; – 10) nên: – 10 = a . 22 + b . 2 + c hay 4a + 2b + c = – 10. (2).
Thay c = – 2 vào (1) ta được: a + b – 2 = – 3 ⇔ a + b = – 1 ⇔ a = – 1 – b. (3)
Thay c = – 2 vào (2) ta được: 4a + 2b – 2 = – 10 ⇔ 4a + 2b = – 8 ⇔ 2a + b = – 4. (4)
Thay (3) vào (4) ta được: 2.(– 1 – b) + b = – 4 ⇔ – 2 – 2b + b = – 4 ⇔ b = 2.
Thay b = 2 vào (3) ta được: a = – 1 – 2 = – 3 (t/m).
Vậy công thức hàm số là y = – 3x2 + 2x – 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Hàm số nào trong các hàm sau đây không phải là hàm số bậc hai?
a) y = 3x2 + x – \(\sqrt 3 \);
b) y = x2 + |x + 1|;
c) \(y = \left\{ \begin{array}{l}{x^2} + 1\,\,\,\,\,\,\,\,\,khi\,\,x \ge 0\\ - 2{x^2} - x\,\,khi\,x < 0;\end{array} \right.\)
d) y = 2(x2 + 1) + 3x – 1.
Câu 4:
Giả sử hàm số bậc hai mô phỏng vòm phía trong một trụ của cầu Nhật Tân là
y = f(x) = \( - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x\) (đơn vị đo: mét).
Hãy tính chiều dài đoạn dây dọi sử dụng nếu khoảng cách từ chân của trụ cầu đến quả nặng là 30 cm.
Câu 5:
Câu 6:
Tìm khoảng biến thiên và tập giá trị của các hàm số sau:
y = f(x) = – 2x2 – 4x + 7;
về câu hỏi!