Câu hỏi:
13/07/2024 4,492Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 16 nên c = – 16.
Khi đó, công thức hàm số là f(x) = ax2 + bx – 16.
Một trong hai giao điểm của đồ thị hàm số với trục hoành có hoành độ bằng – 2 nên ta có a . (– 2)2 + b . (– 2) – 16 = 0 hay 2a – b – 8 = 0. (*)
Đồ thị hàm số có trục đối xứng là đường thẳng x = 3 nên \( - \frac{b}{{2a}} = 3\) hay b = – 6a.
Thay b = – 6a vào (*) ta có: 2a – (– 6a) – 8 = 0 ⇔ 8a = 8 ⇔ a = 1.
Suy ra: b = – 6 . 1 = – 6.
Vậy công thức hàm số là y = x2 – 6x – 16.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm công thức hàm số bậc hai biết:
Đồ thị hàm số đi qua 3 điểm A(1; – 3), B(0; – 2), C(2; – 10).
Câu 2:
Hàm số nào trong các hàm sau đây không phải là hàm số bậc hai?
a) y = 3x2 + x – \(\sqrt 3 \);
b) y = x2 + |x + 1|;
c) \(y = \left\{ \begin{array}{l}{x^2} + 1\,\,\,\,\,\,\,\,\,khi\,\,x \ge 0\\ - 2{x^2} - x\,\,khi\,x < 0;\end{array} \right.\)
d) y = 2(x2 + 1) + 3x – 1.
Câu 4:
Giả sử hàm số bậc hai mô phỏng vòm phía trong một trụ của cầu Nhật Tân là
y = f(x) = \( - \frac{{187}}{{856}}{x^2} + \frac{{8041}}{{856}}x\) (đơn vị đo: mét).
Hãy tính chiều dài đoạn dây dọi sử dụng nếu khoảng cách từ chân của trụ cầu đến quả nặng là 30 cm.
Câu 5:
Câu 6:
Tìm khoảng biến thiên và tập giá trị của các hàm số sau:
y = f(x) = – 2x2 – 4x + 7;
về câu hỏi!