Câu hỏi:
13/07/2024 1,587
Một viên bi được thả không vận tốc đầu và lăn trên máng nghiêng như Hình 1.

Đồ thị nào sau đây phù hợp với sự thay đổi vận tốc của viên bi theo thời gian?
A.
;
B.
;
C.
;
D.
.
Một viên bi được thả không vận tốc đầu và lăn trên máng nghiêng như Hình 1.
Đồ thị nào sau đây phù hợp với sự thay đổi vận tốc của viên bi theo thời gian?
A. ;
B. ;
C. ;
D. .
Câu hỏi trong đề: Giải SBT Toán 10 Bài tập cuối chương 3 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Quan sát Hình 1, ta thấy viên bi rơi từ trên cao xuống theo mặt phẳng nghiêng và tiếp tục lăn trên mặt phẳng ngang theo một đường thẳng. Do đó, trong các đồ thị ở trên, đồ thị ở đáp án C là phù hợp với sự thay đổi vận tốc của viên bi theo thời gian.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
+) Hàm số y = f(x) = \(\sqrt 3 \)x2 + x – 4, đây là hàm số bậc hai do nó có dạng y = ax2 + bx + c với a = \(\sqrt 3 \) ≠ 0, b = 1, c = – 4.
+) Hàm số y = f(x) = x2 + \(\frac{1}{x}\) – 5 không phải là hàm số bậc hai vì nó không có dạng y = ax2 + bx + c.
+) Hàm số y = f(x) = – 2x(x – 1) hay y = f(x) = – 2x2 + 2x, đây là hàm số bậc hai do nó có dạng y = ax2 + bx + c với a = – 2 ≠ 0, b = 2, c = 0.
+) Hàm số y = f(x) = 2(x2 + 1) + 3x – 1 hay y = f(x) = 2x2 + 3x + 1, đây hàm số bậc hai do nó có dạng y = ax2 + bx + c với a = 2 ≠ 0, b = 3, c = 1.
Vậy trong các hàm số đã cho, chỉ có hàm số ở đáp án B không phải là hàm số bậc hai.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Biểu thức \(\sqrt {x - 1} + \frac{1}{{{x^2} - 9}}\) có nghĩa khi \(\left\{ \begin{array}{l}x - 1 > 0\\{x^2} - 9 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x \ne \pm 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x \ne 3\end{array} \right.\).
Vậy tập xác định của hàm số là D = [1; + ∞) \ {3}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.