Câu hỏi:
13/07/2024 478Quảng cáo
Trả lời:
Hướng dẫn giải:
Xét hàm số v = f(t) ta có: t là biến số, v là hàm số của t.
Tập xác định của hàm số là tập giá trị của t nên ta có: D = {0,5; 1; 1,2; 1,8; 2,5}.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Điều kiện xác định của hàm số \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là: 2x – 2 > 0 ⇔ 2x > 2 ⇔ x > 1.
Vậy tập xác định của hàm số \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là D = (1; +∞).
Với mọi giá trị x thuộc D = (1; +∞) ta dễ thấy: 2022 > 0 và \(\sqrt {2x - 2} \) > 0
Do đó, ta có: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) > 0 với mọi x thuộc D = (1; +∞).
Vậy tập giá trị của hàm số \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là T = (0; +∞).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Điều kiện xác định của hàm số \(f(x) = \sqrt {2x - 4} \) là: 2x – 4 ≥ 0 ⇔ 2x ≥ 4 ⇔x ≥ 2
Vậy tập xác định của hàm số \(f(x) = \sqrt {2x - 4} \) là D = [2; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.