Câu hỏi:

11/07/2024 744 Lưu

Cho hàm số y = mx2 – 4x + 1. Tìm điều kiện của m để hàm số đó là hàm số bậc hai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Hàm số y = mx2 – 4x + 1 có dạng y = f(x) = ax2 + bx + c với a = m, b = –4, c = 1.

Do đó, để hàm số là hàm số bậc hai thì: a ≠ 0 hay m ≠ 0

Vậy m ≠ 0 thì hàm số y = mx2 – 4x + 1 là hàm số bậc hai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. m = – 1;
B. m = 2;
C. m = 3;
D. Không tồn tại giá trị m thỏa mãn.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Hàm số y = (m + 1)x3 – (m + 1)x2 đang có lũy thừa bậc cao nhất của biến x là bậc 3, do đó, để hàm số là hàm số bậc hai thì: m + 1 = 0 hay m = –1.

Khi đó, hàm số trở thành y = 0 không là hàm số bậc hai.

Vậy không có giá trị m thỏa mãn yêu cầu đề bài.

Câu 2

A. m = 0;
B. m = 2;
C. m > 0.
D. Không tồn tại giá trị m thỏa mãn.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Hàm số y = 2mx3 + (m – 2)x2 + x + 1 đang có lũy thừa bậc cao nhất của biến x là bậc 3, do đó, để hàm số có lũy thừa bậc cao nhất của biến x là bậc hai thì: 2m = 0 hay m = 0.

Khi đó, hàm số trở thành: y = – 2x2 + x + 1 có dạng y = f(x) = ax2 + bx + c với a = – 2, b = 1, c = 1.

Vậy m = 0 thì hàm số y = 2mx3 + (m – 2)x2 + x + 1 là hàm số bậc hai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP