Câu hỏi:

12/07/2024 3,326

Cho tam giác ABC. Chứng minh rằng: cosA = − cos(B + C).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có \(\widehat A\)+ \(\widehat B\)+ \(\widehat C\) = 180°.

Suy ra: 180° −\(\widehat A\)= \(\widehat B\)+ \(\widehat C\).

Do đó: cos(180° – A) = cos(B + C).

Lại có: cos(180° – A) = – cosA            (quan hệ giữa hai góc bù nhau).

Khi đó ta có: – cosA = cos(B + C) cosA = – cos(B + C).

Vậy đẳng thức được chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biểu thức \(\sqrt {{{\sin }^4}x + 4{{\cos }^2}x} + \sqrt {{{\cos }^4}x + 4{{\sin }^2}x} + {\tan ^2}x\) bằng biểu thức nào sau đây?

Xem đáp án » 08/08/2022 14,479

Câu 2:

Cho (0° < α < 90°), khi đó sin (α + 90°) bằng

Xem đáp án » 08/08/2022 3,062

Câu 3:

Tìm đẳng thức đúng trong các đẳng thức sau đây:

Xem đáp án » 08/08/2022 1,920

Câu 4:

Cho tam giác ABC, tìm đẳng thức sai trong các đẳng thức sau ?

Xem đáp án » 08/08/2022 1,203

Câu 5:

Cho góc x với 0° < x < 90°. Trong các đẳng thức dưới đây, đẳng thức đúng là?

Xem đáp án » 08/08/2022 883

Câu 6:

Chọn hệ thức đúng được suy ra từ hệ thức cos2 α + sin2 α = 1 với 0° ≤ α ≤ 180°?

Xem đáp án » 08/08/2022 717

Bình luận


Bình luận