Câu hỏi:

08/08/2022 628

Trong các mệnh đề sau, mệnh đề nào là một định lý?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B.

A. Vì hình chữ nhật có hai cặp cạnh đối bằng nhau nên mệnh đề ở câu A sai.

Do đó mệnh đề trên không phải là định lý.

B. Mệnh đề ở câu B đúng do dấu hiệu để một số chia hết cho 5 là số đó có chữ số tận cùng là 0 hoặc 5.

Vì vậy mệnh đề câu B là định lý.

C. Ta có một số chia hết cho 9 thì nó cũng chia hết cho 3, tuy nhiên một số chia hết cho 3 thì nó chưa chắc chia hết cho 9.

Chẳng hạn số 3 chia hết cho 3 nhưng nó không chia hết cho 9.

Nên mệnh đề ở câu C sai và nó không phải là định lý.

D. Mệnh đề ở câu D sai do một tứ giác có hai đường chéo vuông góc với nhau thì chưa chắc nó đã là hình thoi.

Vì vậy mệnh đề trên không phải là định lý.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Mệnh đề nào sau đây đúng?

Lời giải

Đáp án đúng là: D.

A. Với x , x < 0;

Giả sử x = – 2 x2 = (– 2)2 = 4 > 0.

Suy ra mệnh đề câu A sai.

B. Với x , x > – 1;

Giả sử x = 0 > – 1 x2 = 0 > 0 là sai.

Do đó mệnh đề ở câu B sai.

C. Với x , x > 0;

Giả sử x = 1 x2 = 12 = 1.

x = x2.

Do đó mệnh đề câu C sai.

D. Ta thấy mệnh đề ở câu D đúng vì với mọi x < 0, ta luôn có x2 > 0 (bình phương của một số âm luôn là một số dương).

Ví dụ: x = – 2 x2 = (– 2)2 = 4 > 0.

Câu 2

Cho a, b là hai số tự nhiên. Mệnh đề kéo theo nào sau đây đúng?

Lời giải

Đáp án đúng là: B.

A. Giả sử a = 3, b = 5 đều là số lẻ.

Ta có a + b = 3 + 5 = 8.

Mà 8 là số chẵn nên mệnh đề ở câu A sai.

B. Ta thấy nếu a, b là số chẵn thì a.b là số chẵn là đúng.

Vì tích của hai số chẵn luôn là một số chẵn.

C. Giả sử a = 6 là số chẵn, b = 1 là số lẻ.

Ta có: a.b = 6.1 = 6.

Mà 6 là số chẵn nên mệnh đề ở câu C sai.

D. Giả sử a = 3 là số lẻ, b = 6 là số chẵn.

Ta có: a + b = 3 + 6 = 9.

Mà 9 là số lẻ nên mệnh đề câu D sai.

Câu 3

Mệnh đề nào dưới đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hai mệnh đề P: “x là số chẵn” và Q: “x chia hết cho 2”.

Phát biểu mệnh đề P kéo theo Q.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong các mệnh đề sau, mệnh đề nào không phải là định lý?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay