Câu hỏi:

08/08/2022 1,980 Lưu

Cho góc α (0° < α < 180°) thỏa mãn \(\cos \alpha = \frac{5}{{13}}\).

Giá trị của biểu thức \(P = 2\sqrt {4 + 5\tan \alpha } + 3\sqrt {9 - 12\cot \alpha } \) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: D.

Vì 0° < α < 180° nên sinα > 0

Do đó \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{5}{{13}}} \right)}^2}} = \frac{{12}}{{13}}\).

Suy ra \(\tan \alpha = \frac{{12}}{5}\); \(\cot \alpha = \frac{5}{{12}}\)

Do đó \(P = 2\sqrt {4 + 5.\frac{{12}}{5}} + 3\sqrt {9 - 12.\frac{5}{{12}}} = 2.4 + 3.2 = 8 + 6 = 14\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Ta có \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\)

\( \Rightarrow {\cos ^2}\alpha = \frac{1}{{{{\tan }^2}\alpha + 1}} = \frac{1}{{{{\left( { - 2\sqrt 2 } \right)}^2} + 1}} = \frac{1}{9}\)\( \Rightarrow \cos \alpha = \pm \frac{1}{3}\).

Vì 0° < α < 180° sinα > 0 mà \(\tan \alpha = - 2\sqrt 2 \)< 0 nên cosα < 0.

Do đó \(\cos \alpha = - \frac{1}{3}\).

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Vì 0° < α < 180° nên sinα > 0.

Lại có sin2α + cos2α = 1

Suy ra \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = \frac{{2\sqrt 2 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP