Câu hỏi:
08/08/2022 264Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Hướng dẫn giải:
Theo định lý côsin, ta có:
BC2 = AB2 + AC2 −2.AB.AC.cosA = 72 + 102 −2.7.10.cos112° ≈ 201,44.
Vậy \(BC \approx \sqrt {201,44} \approx 14,19\).
Theo hệ quả của định lý cô sin, ta có:
\(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} \approx \frac{{{{10}^2} + {{14,19}^2} - {7^2}}}{{2.10.14,19}} \approx 0,89\).
Suy ra \[\widehat B \approx 27^\circ 7'\].
Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right)\)
Do đó: \(\widehat C \approx 40^\circ 53'\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có \(\widehat A = 120^\circ \), AB = 1, AC = 2. Trên tia CA kéo dài lấy điểm D sao cho BD = 2. Tính AD.
Câu 2:
Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC.
Câu 3:
Câu 4:
Cho tam giác ABC có a = 4, b = 6 và cosC = \(\frac{2}{3}\). Giá trị của c bằng:
Câu 5:
Câu 6:
Cho tam giác DEF có DE = 4 cm; DF = 5 cm và EF = 3 cm. Số đo của của góc D gần nhất với giá trị nào dưới đây?
Câu 7:
Cho góc xOy bằng 60°. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = \(4\sqrt 3 \). Tính độ dài đoạn OA để OB có độ dài lớn nhất.
về câu hỏi!