Câu hỏi:

13/07/2024 594

Tam giác ABC có BC = 8 và \(\widehat A = 30^\circ \). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Ta áp dụng công thức \(\frac{a}{{\sin A}} = 2R\)

\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{BC}}{{2\sin A}} = \frac{8}{{2\sin 30^\circ }} = \frac{8}{{2.\frac{1}{2}}} = 8\).

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là R = 8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Tam giác ABC có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)

Thay số: \(B{C^2} = {4^2} + {8^2} - 2.4.8.\cos 30^\circ = 80 - 32\sqrt 3 \)

Do đó: BC ≈ 5.

Ta có: \(\frac{{BC}}{{\sin A}} = 2R\)\( \Rightarrow R = \frac{{BC}}{{2\sin A}} \approx \frac{5}{{2.\sin 30^\circ }} = 5\).

Câu 2

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Tam giác ABC vuông cân tại A nên AB = AC = 2a.

Áp dụng định lí Pythagore ta tính được: BC = \(\sqrt {A{B^2} + A{C^2}} \)= 2a\(\sqrt 2 \).

Diện tích tam giác ABC là: S = \(\frac{1}{2}\)AB.AC = 2a2.

Nửa chu vi tam giác ABC là: p = \(\frac{1}{2}\)(AB + AC + BC) = 2a + a\(\sqrt 2 \).

Mặt khác: S = p.r \( \Rightarrow \)r = \(\frac{S}{p} = \frac{{2{a^2}}}{{2a + a\sqrt 2 }}\)= 2a – a\(\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP