Câu hỏi:
08/08/2022 1,429Tam giác DEF có DE = 5, DF = 8 và \(\widehat {EDF} = 50^\circ \). Bán kính r của đường tròn nội tiếp tam giác đã cho gần nhất với giá trị nào sau đây?
Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Theo định lí côsin ta có: \[E{F^2} = D{E^2} + D{F^2} - 2.DF.DF\]
\( \Rightarrow \)\(E{F^2} = {5^2} + {8^2} - 2.5.8.\cos 50^\circ \approx 37,58\)
\( \Rightarrow EF \approx 6,13\).
Ta có \(p = \frac{1}{2}\left( {DE + DF + EF} \right) \approx \frac{1}{2}\left( {5 + 8 + 6,13} \right) = 9,565\).
Do đó diện tích tam giác ABC là: \(S = \sqrt {p\left( {p - DE} \right)\left( {p - DF} \right)\left( {p - EF} \right)} \approx 15,32\).
Lại có \(S = p.r \Rightarrow r = \frac{S}{p} \approx \frac{{15,32}}{{9,565}} \approx 1,6\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Tam giác ABC có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)
Thay số: \(B{C^2} = {4^2} + {8^2} - 2.4.8.\cos 30^\circ = 80 - 32\sqrt 3 \)
Do đó: BC ≈ 5.
Ta có: \(\frac{{BC}}{{\sin A}} = 2R\)\( \Rightarrow R = \frac{{BC}}{{2\sin A}} \approx \frac{5}{{2.\sin 30^\circ }} = 5\).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Tam giác ABC vuông cân tại A nên AB = AC = 2a.
Áp dụng định lí Pythagore ta tính được: BC = \(\sqrt {A{B^2} + A{C^2}} \)= 2a\(\sqrt 2 \).
Diện tích tam giác ABC là: S = \(\frac{1}{2}\)AB.AC = 2a2.
Nửa chu vi tam giác ABC là: p = \(\frac{1}{2}\)(AB + AC + BC) = 2a + a\(\sqrt 2 \).
Mặt khác: S = p.r \( \Rightarrow \)r = \(\frac{S}{p} = \frac{{2{a^2}}}{{2a + a\sqrt 2 }}\)= 2a – a\(\sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.