Câu hỏi:

09/08/2022 302

Cho góc nhọn xOy và một điểm A nằm trong góc đó. Kẻ AH ^ Ox tại H và AK ^ Oy tại K. Kéo dài AH một đoạn HB = AH và kéo dài AK một đoạn KC = AK. Nối OA, OB, OC. Chọn phát biểu đúng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho góc nhọn xOy và một điểm A nằm trong góc đó. Kẻ AH (ảnh 1)

Xét tam giác OAH và tam giác OBH có:

OH là cạnh chung,

\(\widehat {OHA} = \widehat {OHB}\left( { = 90^\circ } \right),\)

AH = BH (giả thiết)

Do đó DOAH = DOBH (c.g.c)

Suy ra OA = OB (hai cạnh tương ứng)          (1)

Chứng minh tương tự ta cũng có DOKA = DOKC (c.g.c)

Suy ra OA = OC (hai cạnh tương ứng)          (2)

Từ (1) và (2) suy ra OA = OB = OC. Do đó A là khẳng định đúng.

DOAH = DOBH (c.g.c) (chứng minh trên)

Nên \(\widehat {AOH} = \widehat {BOH}\) (hai góc tương ứng)

Suy ra OH là tia phân giác của \(\widehat {AOB}\)

Do đó \(\widehat {AOH} = \widehat {BOH} = \frac{1}{2}\widehat {AOB}\)        (3)

Tương tự ta cũng có OK là tia phân giác của \(\widehat {COA}\)

Do đó \(\widehat {KOA} = \widehat {COK} = \frac{1}{2}\widehat {COA}\)        (4)

Từ (3) và (4) ta có: \(\widehat {KOA} + \widehat {AOH} = \frac{1}{2}\widehat {COA} + \frac{1}{2}\widehat {AOB}\)

Hay \(\widehat {HOK} = \frac{1}{2}\left( {\widehat {COA} + \widehat {AOB}} \right) = \frac{1}{2}\widehat {COB}\). Do đó B là khẳng định đúng

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình vẽ dưới đây:

Cho hình vẽ dưới đây: Biết AB = AC, BD = EC, góc ABC = góc ACB (ảnh 1)

Biết AB = AC, BD = EC, ABC^=ACB^. Xét các khẳng định sau:

(1) DABD = DACE;

(2) DABE = DACD.

Chọn câu đúng:

Lời giải

Đáp án đúng là: C

+ Xét DABD và DACE có:

AB = AC (giả thiết),

ABD^=ACE^ (giả thiết),

BD = CE (giả thiết)

Do đó DABD = DACE (c.g.c)

+ Vì BE = BD + DE, CD = CE + ED

Mà BD = CE (giả thiết) nên BE = CD.

Xét DABE và DACD có:

AB = AC (giả thiết),

ABE^=ACD^ (giả thiết),

BE = CD (chứng minh trên)

Do đó DABE = DACD (c.g.c)

Vậy cả phương án A và B đều đúng, ta chọn phương án C.

Lời giải

Đáp án đúng là: B

Cho hình vuông ABCD, trên cạnh AB lấy điểm M, trên cạnh BC (ảnh 1)

Vì ABCD là hình vuông (giả thiết) nên AB = BC (tính chất hình vuông)

Do đó AM + MB = BN + NC

Mà AM = BN (giả thiết) nên MB = NC.

Xét tam giác MBN và tam giác NCP có:

BN = CP (giả thiết),

\(\widehat B = \widehat C\) (\( = 90^\circ ,\) tính chất hình vuông),

MB = NC (chứng minh trên)

Do đó DMBN = DNCP (c.g.c)

Suy ra \(\widehat {BMN} = \widehat {CNP}\) (hai góc tương ứng)

\(\widehat {BMN} + \widehat {BNM} = 90^\circ \) (trong tam giác BMN vuông tại B, hai góc nhọn phụ nhau)

Do đó \(\widehat {BNM} + \widehat {CNP} = 90^\circ \)

Mặt khác \(\widehat {BNM} + \widehat {MNP} + \widehat {CNP} = 180^\circ \)

Suy ra \(\widehat {MNP} = 180^\circ - \left( {\widehat {BNM} + \widehat {CNP}} \right) = 180^\circ - 90^\circ = 90^\circ \)

Vậy \(\widehat {MNP} = 90^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình vẽ sau:

Cho hình vẽ sau: Điều kiện để tam giác ABC = tam giác AGE theo  (ảnh 1)

Điều kiện để DABC = DAGE theo trường hợp cạnh – góc – cạnh là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho tam giác ABC có AB = AC = BC, phân giác BD và CE cắt nhau tại O. Chọn phát biểu sai:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay