Câu hỏi:

09/08/2022 300

Cho ∆FDE và ∆PQR có: \[\widehat E = \widehat R = 90^\circ \], DF = QP, \[\widehat D = \widehat P = 30^\circ \]. Phát biểu nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho tam giác FDE và tam giác PQR có: góc E = góc R = 90 độ (ảnh 1)

Xét ∆FDE và ∆QPR, có:

\[\widehat E = \widehat R = 90^\circ \].

DF = QP (giả thiết).

\[\widehat D = \widehat P = 30^\circ \].

Do đó ∆FDE = ∆QPR (cạnh huyền – góc nhọn).

Hay ta cũng có thể viết ∆DFE = ∆PQR;

Ta thấy đáp án A, C, D sai vì viết sai thứ tự các đỉnh.

Vậy ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho tam giác ABC và tàm giác DEF có BC = EF, . Cần thêm điều kiện gì để  (ảnh 1)

Vì ∆ABC vuông tại B nên BC là cạnh góc vuông.

Vì ∆DEF vuông tại E nên EF là cạnh góc vuông.

Do đó để ∆ABC = ∆DEF theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện cạnh huyền của ∆ABC bằng cạnh huyền của ∆DEF (1).

Cạnh huyền của ∆ABC là: CA. (2)

Cạnh huyền của ∆DEF là: FD.  (3)

Từ (1), (2) và (3) ta suy ra CA = FD.

Vậy ta chọn đáp án C.

Câu 2

Lời giải

Đáp án đúng là: B

Cho tam giác ABC nhọn có AH vuông góc BC tại H. Trên tia đối của tia AB (ảnh 1)

Xét ∆AHB và ∆AED, có:

\[\widehat {AHB} = \widehat {AED} = 90^\circ \].

AB = AD (giả thiết).

\[\widehat {BAH} = \widehat {EAD}\] (2 góc đối đỉnh).

Do đó ∆AHB = ∆AED (cạnh huyền – góc nhọn).

Vậy ta chọn đáp án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP