Câu hỏi:

09/08/2022 340 Lưu

Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông không bằng nhau?

A.

Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông  (ảnh 1)

B.

Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông  (ảnh 2)

C.

Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông  (ảnh 3)

D.

Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông  (ảnh 4)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta xét từng đáp án:

Đáp án A:

Xét ∆ABC và ∆A’B’C’, có:

\[\widehat {ABC} = \widehat {A'B'C'} = 90^\circ \],

AB = A’B’ (giả thiết),

BC = B’C’ (giả thiết).

Do đó ∆ABC = ∆A’B’C’ (hai cạnh góc vuông).

Vậy đáp án A đúng.

Đáp án B:

Xét ∆A’B’C’ và ∆ABC, có:

\[\widehat {A'B'C'} = \widehat {ABC} = 90^\circ \].

B’C’ = BC (giả thiết).

\[\widehat {A'C'B'} = \widehat {ACB}\] (giả thiết).

Do đó ∆A’B’C’ = ∆ABC (cạnh góc vuông – góc nhọn kề).

Vậy đáp án B đúng.

Đáp án C:

Xét ∆ABC và ∆A’B’C’, có:

\[\widehat {ABC} = \widehat {A'B'C'} = 90^\circ \].

AC = A’C’ (giả thiết).

\[\widehat {BAC} = \widehat {B'A'C'}\] (giả thiết).

Do đó ∆ABC = ∆A’B’C’ (cạnh huyền – góc nhọn).

Vậy đáp án C đúng.

Đáp án D:

Xét ∆ABC và ∆A’B’C’, có các dữ kiện sau:

\[\widehat {ABC} = \widehat {A'B'C'} = 90^\circ \].

\[\widehat {BCA} = \widehat {B'C'A'}\] (giả thiết).

\[\widehat {BAC} = \widehat {B'A'C'}\] (giả thiết).

Tất cả các dữ kiện trên đều không phù hợp với cả bốn trường hợp bằng nhau của tam giác vuông.

Ta suy ra ∆ABC ≠ ∆A’B’C’.

Do đó hình vẽ đáp án D chứa hai tam giác không bằng nhau.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Cạnh – cạnh – cạnh;

B. Cạnh huyền – góc nhọn;

C. Cạnh huyền – cạnh góc vuông;

D. Cạnh – góc – cạnh.

Lời giải

Đáp án đúng là: B

Cho tam giác ABC nhọn có AH vuông góc BC tại H. Trên tia đối của tia AB (ảnh 1)

Xét ∆AHB và ∆AED, có:

\[\widehat {AHB} = \widehat {AED} = 90^\circ \].

AB = AD (giả thiết).

\[\widehat {BAH} = \widehat {EAD}\] (2 góc đối đỉnh).

Do đó ∆AHB = ∆AED (cạnh huyền – góc nhọn).

Vậy ta chọn đáp án B.

Lời giải

Đáp án đúng là: C

Cho tam giác ABC và tàm giác DEF có BC = EF, . Cần thêm điều kiện gì để  (ảnh 1)

Vì ∆ABC vuông tại B nên BC là cạnh góc vuông.

Vì ∆DEF vuông tại E nên EF là cạnh góc vuông.

Do đó để ∆ABC = ∆DEF theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện cạnh huyền của ∆ABC bằng cạnh huyền của ∆DEF (1).

Cạnh huyền của ∆ABC là: CA. (2)

Cạnh huyền của ∆DEF là: FD.  (3)

Từ (1), (2) và (3) ta suy ra CA = FD.

Vậy ta chọn đáp án C.

Câu 3

A. ∆ADB = ∆ADC;

B. ∆IDB = ∆IDC;

C. ∆AFC = ∆ABE;

D. ∆AFI = ∆AEI.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. ∆ABD = ∆BCD;

B. ∆ABD = ∆CDB;

C. ∆ABD = ∆DBC;

D. ∆ADB = ∆CBD.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Cạnh huyền – cạnh góc vuông;

B. Cạnh huyền – góc nhọn;

C. Góc – cạnh – góc;

D. Cạnh – góc – cạnh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP