Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì trong tam giác vuông, hai góc nhọn phụ nhau nên ta có:
∆AEN vuông tại A: \[\widehat {AEN} + \widehat {ANE} = 90^\circ \] (1).
∆BEM vuông tại B: \[\widehat {BEM} + \widehat {BME} = 90^\circ \] (2).
Ta có \[\widehat {AEN} = \widehat {BEM}\] (2 góc đối đỉnh) (3).
Từ (1), (2), (3), ta suy ra \[\widehat {ANE} = \widehat {BME}\].
Do đó đáp án C đúng.
Xét ∆AEN và ∆BEM, có:
\[\widehat {NAE} = \widehat {MBE} = 90^\circ \].
AN = BM (giả thiết).
\[\widehat {ANE} = \widehat {BME}\] (chứng minh trên).
Do đó ∆AEN = ∆BEM (cạnh góc vuông – góc nhọn kề).
Ta có ∆AEN = ∆BEM (chứng minh trên).
Suy ra EN = EM (hai cạnh tương ứng).
Khi đó E là trung điểm MN.
Do đó đáp án A đúng.
Ta có ∆AEN = ∆BEM (chứng minh trên).
Suy ra AE = BE (hai cạnh tương ứng).
Khi đó E là trung điểm AB.
Do đó đáp án B đúng.
Đáp án D sai vì AE, ME không phải là cặp cạnh tương ứng trong hai tam giác bằng nhau ∆AEN và ∆BEM.
Vậy ta chọn đáp án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC vuông tại A và ∆MNP vuông tại M có AB = MN, CB = PN. Biết AC = 5 cm. Tính độ dài MP.
Câu 2:
Cho ∆ABC có M là trung điểm BC. Kẻ BE và CF lần lượt cùng vuông góc với AM ở E và F. Khi đó ta có BF song song với đường thẳng nào trong các đường thẳng sau đây.
Câu 3:
Cho ∆ABC vuông tại A có AB < AC, \[\widehat B = 60^\circ \]. Kẻ AH ⊥ BC (H ∈ BC). Gọi D là điểm trên cạnh AC sao cho AD = AB. Kẻ DE ⊥ BC (E ∈ BC) và DK ⊥ AH (K ∈ AH). Cho các khẳng định sau:
(I) BH = AK;
(II) HA = KD = HE.
Chọn phương án đúng:
Câu 4:
Cho ∆ABC vuông tại A. Trên cạnh BC, lấy điểm D sao cho BD = BA = 5 cm. Đường thẳng vuông góc với BC tại D cắt AC tại H. Gọi E là giao điểm của DH và AB. Biết CD = 3 cm. Độ dài cạnh BE bằng
Câu 5:
Cho ∆ABC vuông tại A, tia phân giác \[\widehat B\] cắt AC tại D. Kẻ DE ⊥ BC tại E. Gọi H là giao điểm của BD và AE. Đường thẳng BH vuông góc với đường thẳng nào trong các đường thẳng sau đây.
Câu 6:
Cho ∆ABC có AI, BH, CK là các đường cao (I ∈ BC, K ∈ AB, H ∈ AC). Biết ∆ABH = ∆ACK. Kết luận nào sau đây đúng?
Câu 7:
Cho ∆ABC nhọn và ∆ABC = ∆DEF. Kẻ AH ⊥ BC (H ∈ BC) và DK ⊥ EF (K ∈ EF). Kết luận nào sau đây là đúng?
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi Giữa kì 2 Toán 7 Cánh diều cấu trúc mới có đáp án - Đề 01
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 01
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ thuận (có lời giải)
12 Bài tập Một số bài toán thực tế liên quan đại lượng tỉ lệ nghịch (có lời giải)
Bộ 5 đề thi Giữa kì 2 Toán 7 Chân trời sáng tạo cấu trúc mới có đáp án - Đề 02
Đề kiểm tra giữa học kì 2 Toán lớp 7 CTST - Đề 01 có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận