Câu hỏi:

09/08/2022 205 Lưu

Cho hình vẽ:

Cho hình vẽ: Kết luận nào sau đây sai? A. E là trung điểm MN; (ảnh 1)

Kết luận nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Vì trong tam giác vuông, hai góc nhọn phụ nhau nên ta có:

∆AEN vuông tại A: \[\widehat {AEN} + \widehat {ANE} = 90^\circ \] (1).

∆BEM vuông tại B: \[\widehat {BEM} + \widehat {BME} = 90^\circ \] (2).

Ta có \[\widehat {AEN} = \widehat {BEM}\] (2 góc đối đỉnh) (3).

Từ (1), (2), (3), ta suy ra \[\widehat {ANE} = \widehat {BME}\].

Do đó đáp án C đúng.

Xét ∆AEN và ∆BEM, có:

\[\widehat {NAE} = \widehat {MBE} = 90^\circ \].

AN = BM (giả thiết).

\[\widehat {ANE} = \widehat {BME}\] (chứng minh trên).

Do đó ∆AEN = ∆BEM (cạnh góc vuông – góc nhọn kề).

Ta có ∆AEN = ∆BEM (chứng minh trên).

Suy ra EN = EM (hai cạnh tương ứng).

Khi đó E là trung điểm MN.

Do đó đáp án A đúng.

Ta có ∆AEN = ∆BEM (chứng minh trên).

Suy ra AE = BE (hai cạnh tương ứng).

Khi đó E là trung điểm AB.

Do đó đáp án B đúng.

Đáp án D sai vì AE, ME không phải là cặp cạnh tương ứng trong hai tam giác bằng nhau ∆AEN và ∆BEM.

Vậy ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho tam giác ABC vuông tại A và tam giác MNP vuông tại M (ảnh 1)

Xét ∆ABC và ∆MNP, có:

\[\widehat {BAC} = \widehat {NMP} = 90^\circ \].

AB = MN (giả thiết).

CB = PN (giả thiết).

Do đó ∆ABC = ∆MNP (cạnh huyền – cạnh góc vuông).

Ta suy ra AC = MP (hai cạnh tương ứng).

Khi đó ta có MP = AC = 5 cm.

Vậy ta chọn đáp án B.

Lời giải

Đáp án đúng là: A

Cho tam giác ABC có M là trung điểm BC. Kẻ BE và CF lần lượt cùng (ảnh 1)

Xét ∆BME và ∆CMF, có:

BM = CM (M là trung điểm BC).

\[\widehat {BEM} = \widehat {CFM} = 90^\circ \].

\[\widehat {BME} = \widehat {CMF}\] (hai góc đối đỉnh).

Do đó ∆BME = ∆CMF (cạnh huyền – góc nhọn).

Ta suy ra ME = MF (cặp cạnh tương ứng).

Xét ∆BMF và ∆CME, có:

MF = ME (chứng minh trên).

BM = CM (M là trung điểm BC).

\[\widehat {BMF} = \widehat {CME}\] (hai góc đối đỉnh).

Do đó ∆BMF = ∆CME (cạnh – góc – cạnh).

Ta suy ra \[\widehat {MBF} = \widehat {MCE}\].

Mà hai góc này ở vị trí so le trong.

Do đó ta có BF // CE.

Vậy ta chọn đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP