Câu hỏi:

09/08/2022 2,589

Cho ∆ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự các điểm D, E, F sao cho AD = BE = CF. Hỏi ∆DEF là tam giác gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tam giác ABC đều. Trên các cạnh AB, BC, CA lấy theo thứ tự các  (ảnh 1)

Vì ba điểm A, D, B thẳng hàng nên BD = AB – AD.

Vì ba điểm A, F, C thẳng hàng nên AF = AC – CF.

Ta có AB = AC (∆ABC đều) và AD = CF (giả thiết).

Do đó AB – AD = AC – CF.

Suy ra BD = AF.

Xét ∆ADF và ∆BED, có:

AD = BE (giả thiết).

BD = AF (chứng minh trên).

Do đó ∆ADF = ∆BED (cạnh – góc – cạnh).

Suy ra \[\widehat {FDA} = \widehat {DEB}\] (cặp góc tương ứng).

Xét ∆BDE, có: \[\widehat {BDE} + \widehat {EBD} + \widehat {DEB} = 180^\circ \].

Suy ra \[\widehat {BDE} + 60^\circ + \widehat {FDA} = 180^\circ \] (∆ABC đều).

\[\widehat {BDE} + \widehat {EDF} + \widehat {FDA} = 180^\circ \] (kề bù).

Do đó \[\widehat {EDF} = 60^\circ \].

Chứng minh tương tự, ta được \[\widehat {DEF} = 60^\circ \].

Ta suy ra ∆DEF đều.

Do đó đáp án A đúng.

∆DEF là tam giác đều nên ∆DEF không thể là tam giác vuông (vì tam giác đều có các góc bằng nhau và cùng bằng 60°).

Do đó ta loại đáp án B, C, D.

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho ∆ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc canh AB sa cho AD = AE. Gọi I là giao điểm của BD và CE. Hỏi ∆IBC là tam giác gì?

Lời giải

Đáp án đúng là: A

Cho ∆ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc canh  (ảnh 1)

Vì ∆ABC cân tại A nên AB = AC.

Xét ∆ABD và ∆ACE, có:

AB = AC (chứng minh trên).

\[\widehat {BAC}\] là góc chung.

AD = AE (giả thiết).

Do đó ∆ABD = ∆ACE (cạnh – góc – cạnh).

Suy ra \[\widehat {ABD} = \widehat {ACE}\] (cặp cạnh tương ứng).

Vì ∆ABC cân tại A nên \[\widehat {ABC} = \widehat {ACB}\].

Suy ra \[\widehat {ABD} + \widehat {DBC} = \widehat {ACE} + \widehat {ECB}\].

\[\widehat {ABD} = \widehat {ACE}\] (chứng minh trên).

Do đó \[\widehat {DBC} = \widehat {ECB}\] hay \[\widehat {IBC} = \widehat {ICB}\].

Khi đó ta có ∆IBC cân tại I.

Vậy ta chọn đáp án A.

Lời giải

Đáp án đúng là: C

Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của  (ảnh 1)

Xét ∆EAD và ∆FAD, có:

AF = AE (giả thiết).

\[\widehat {FAD} = \widehat {DAE}\] (AD là phân giác \[\widehat {BAC}\]).

AD là cạnh chung.

Do đó ∆EAD = ∆FAD (cạnh – góc – cạnh).

Suy ra \[\widehat {{E_2}} = \widehat {{F_2}}\].

Ta có \[\widehat {{E_1}} + \widehat {{E_2}} = 180^\circ \] (hai góc kề bù).

Lại có \[\widehat {{F_1}} + \widehat {{F_2}} = 180^\circ \] (hai góc kề bù).

Do đó ta có \[\widehat {{E_1}} = \widehat {{F_1}}\] (1).

∆ABC vuông tại A: \[\widehat {ABC} + \widehat {ACB} = 90^\circ \].

∆CDE vuông tại D: \[\widehat {DEC} + \widehat {ACB} = 90^\circ \].

Do đó \[\widehat {ABC} = \widehat {DEC}\] hay \[\widehat {FBD} = \widehat {{E_1}}\] (2).

Từ (1), (2), ta suy ra \[\widehat {FBD} = \widehat {{F_1}}\].

Do đó ∆FBD cân tại D.

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình vẽ.

Cho hình vẽ. Tam giác cân trong hình vẽ bên là: A. tam giác ACD; (ảnh 1)

Tam giác cân trong hình vẽ bên là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho ∆ABC cân tại A. Trên cạnh BC lấy các điểm M, N sao cho BM = CN. Kết luận nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\[\widehat {xOy} = 120^\circ \]. Lấy điểm A thuộc tia phân giác của \[\widehat {xOy}\]. Kẻ AB Ox tại B, AC Oy tại C. Hỏi ∆ABC là tam giác gì?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay