Câu hỏi:

11/08/2022 296

Số lượng bệnh nhân khỏi bệnh của hai bệnh viện A và B trong 6 ngày được thống kê trong bảng dưới đây:

Số lượng bệnh nhân khỏi bệnh của hai bệnh viện A và B trong 6 ngày được  (ảnh 1)

Sử dụng kiến thức về khoảng biến thiên và khoảng tứ phân vị, xác định xem số lượng bệnh nhân khỏi bệnh của bệnh viện nào ổn định hơn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: B.

- Sắp xếp số lượng bệnh nhân khỏi bệnh của bệnh viện A theo thứ tự không giảm ta có:

15; 20; 24; 29; 32; 44.

+ Giá trị nhỏ nhất của mẫu số liệu trên là 15

+ Giá trị lớn nhất của mẫu số liệu trên là 44

Suy ra khoảng biến thiên RA = 44 – 15 = 29.

Ta lại có:

+ Giá trị tứ phân vị thứ nhất là trung vị của mẫu: 15; 20; 24.

Do đó Q1A = 20.

+ Giá trị tứ phân vị thứ ba là trung vị của mẫu: 29; 32; 44.

Do đó Q3A = 32.

Suy ra khoảng tứ phân vị ∆QA = Q3A – Q1A = 32 – 20 = 12.

- Sắp xếp số lượng bệnh nhân khỏi bệnh của bệnh viện B theo thứ tự không giảm ta có:

15; 20; 25; 26; 30; 33.

+ Giá trị nhỏ nhất của mẫu số liệu trên là 15

+ Giá trị lớn nhất của mẫu số liệu trên là 33

Suy ra khoảng biến thiên RB = 33 – 15 = 18.

Ta lại có:

+ Giá trị tứ phân vị thứ nhất là trung vị của mẫu: 15; 20; 25.

Do đó Q1B = 20.

+ Giá trị tứ phân vị thứ ba là trung vị của mẫu: 26; 30; 33.

Do đó Q3B = 30.

Suy ra ∆QB = Q3B – Q1B = 30 – 20 = 10.

Do đó khoảng tứ phân vị của mẫu số liệu trên là 10.

Ta thấy khoảng biến thiên và khoảng tứ phân vị trong số lượng bệnh nhân khỏi bệnh của bệnh viện B bé hơn bệnh viện A nên số lượng bệnh nhân khỏi bệnh của bệnh viện B ổn định hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

- Số giờ trung bình sử dụng Internet của bạn Nhung là:

x¯1=5+2+6+4+55=4,4

Công thức tính phương sai của một mẫu số liệu là:

S2 =1nx1x¯2+x2x¯2+...+xnx¯2

Thay số ta có:

 S22= 15 [(5 – 4,4)2 + (2 – 4,4)2 + (6 – 4,4)2 + (4 – 4,4)2 + (5 – 4,4)2] = 1,84.

Do đó phương sai của mẫu số liệu trên là 1,84.

Độ lệch chuẩn của mẫu số liệu trên là S1 = S12 = 1,84  ≈ 1,36.

- Số giờ trung bình sử dụng Internet của bạn Ngân là:

x¯2=3+1+6+5+75=4,4

Công thức tính phương sai của một mẫu số liệu là:

S2 =1nx1x¯2+x2x¯2+...+xnx¯2

Thay số ta có:

 S22= 15 [(3 – 4,4)2 + (1 – 4,4)2 + (6 – 4,4)2 + (5 – 4,4)2 + (7 – 4,4)2] = 4,64.

Do đó phương sai của mẫu số liệu trên là 4,64.

Độ lệch chuẩn của mẫu số liệu trên là S2 =S22=4,64 =  ≈ 2,15.

Ta thấy phương sai và độ lệch chuẩn trong số giờ sử dụng Internet của bạn Nhung bé hơn Ngân nên số giờ sử dụng Internet của bạn Nhung ổn định hơn.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

- Sắp xếp số lượng học sinh đạt giải của trường A theo thứ tự không giảm ta có:

6; 8; 10; 12; 15; 21.

+ Giá trị nhỏ nhất của mẫu số liệu trên là 6.

+ Giá trị lớn nhất của mẫu số liệu trên là 21.

Suy ra khoảng biến thiên RA = 21 – 6 = 15.

Ta lại có:

+ Giá trị tứ phân vị thứ nhất là trung vị của mẫu: 6; 8; 10.

Do đó Q1A = 8.

+ Giá trị tứ phân vị thứ ba là trung vị của mẫu: 12; 15; 21.

Do đó Q3A = 15.

Suy ra khoảng tứ phân vị ∆QA = Q3A – Q1A = 15 – 8 = 7.

- Sắp xếp số lượng học sinh đạt giải của trường B theo thứ tự không giảm ta có:

11; 15; 15; 17; 21; 23.

+ Giá trị nhỏ nhất của mẫu số liệu trên là 11

+ Giá trị lớn nhất của mẫu số liệu trên là 23

Suy ra khoảng biến thiên RB = 23 – 11 = 12.

Ta lại có:

+ Giá trị tứ phân vị thứ nhất là trung vị của mẫu: 11; 15; 15.

Do đó Q1B = 15.

+ Giá trị tứ phân vị thứ ba là trung vị của mẫu: 17; 21; 23.

Do đó Q3B = 21.

Suy ra khoảng tứ phân vị ∆QB = Q3B – Q1B = 21 – 15 = 6

Ta thấy khoảng biến thiên và khoảng tứ phân vị trong số lượng học sinh đạt giải của trường B bé hơn trường A nên số lượng đạt giải của trường B ổn định hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP