Câu hỏi:

18/08/2022 150

Số nghiệm của phương trình: \[\sqrt {x + 8 - 2\sqrt {x + 7} } = 2 - \sqrt {x + 1 - \sqrt {x + 7} } \] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Đặt \(t = \sqrt {x + 7} \) , điều kiện t ≥ 0.

Ta có \(\sqrt {{t^2} + 1 - 2t} = 2 - \sqrt {{t^2} - 6 - t} \)\( \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \)

Nếu t ≥ 1 thì ta có \(3 - t = \sqrt {{t^2} - t - 6} \)

\( \Rightarrow \) 9 – 6t + t2 = t2 – t – 6

\( \Rightarrow \) – 5t + 15 = 0

\( \Rightarrow \) t = 3 (thỏa mãn)

Với t = 3 ta có \(\sqrt {x + 7} = 3\)

\( \Rightarrow \) x + 7 = 9

\( \Rightarrow \) x = 2

Nếu t < 1 thì ta có \(1 + t = \sqrt {{t^2} - t - 6} \)

t2 + 2t + 1 = t2 – t – 6

\( \Leftrightarrow t = - \frac{7}{3}\)(loại)

Vậy phương trình có 1 nghiệm x = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Bình phương hai vế của phương trình ta có

x2 – 4x – 12 = (x – 4)2

\( \Rightarrow \) x2 – 4x – 12 = x2 – 8x + 16

\( \Rightarrow \) 4x = 28

\( \Rightarrow \) x = 7

Thay nghiệm trên vào phương trình đã cho, ta thấy x = 7 thoả mãn

Vậy phương trình có nghiệm x = 7

Lời giải

Đáp án đúng là: A

Bình phương hai vế của phương trình ta có

2x2 – 2x + 4 = x2 – x + 2

\( \Rightarrow \) x2 – x + 2 = 0

Phương trình có = (– 1)2 – 4.1.2 = – 7 < 0

Suy ra phương trình vô nghiệm

Vậy số nghiệm của phương trình là 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP