Câu hỏi:

18/08/2022 1,682

Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường, không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A  (ảnh 1)

Đi từ thành phố A đến thành phố D ta có các trường hợp sau:

Trường hợp 1. Đi từ thành phố A đến thành phố B rồi đến thành phố D

Ta có: đi là từ thành phố A đến thành phố B có 3 cách, đi là từ thành phố B đến thành phố D có 2 cách

Vậy trường hợp 1 có 3.2 = 6 cách

Trường hợp 2. Đi từ thành phố A đến thành phố C rồi đến thành phố D

Ta có: đi là từ thành phố A đến thành phố C có 2 cách ,đi là từ thành phố C đến thành phố D có 3 cách

Vậy trường hợp 2 có 2.3 = 6 cách

Để đi từ thành phố A đến thành phố D ta có 6 + 6 = 12 cách.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Vì 10 đội bóng thi đấu theo thể thức vòng tròn một lượt nên số trận đấu là \(C_{10}^2 = 45\) (trận).

Gọi số trận hòa là x, số không hòa là 45 – x (trận).

Tổng số điểm mỗi trận hòa là 2, tổng số điểm của trận không hòa là 3(45 – x).

Theo đề bài ta có phương trình 2x + 3(45 – x) = 130 \( \Leftrightarrow \) x = 5.

Vậy có 5 trận hòa.                                                 

Lời giải

Đáp án đúng là: D

Gọi số cần lập \(\overline {abcd} \), a ≠ 0.

chọn số d có 4 cách chọn (Vì \(\overline {abcd} \) là số lẻ nên d chỉ có thể chọn một trong 4 số 1; 3; 5; 7)

chọn số a có 6 cách chọn (Vì a ≠ 0; a ≠ d nên a không được chọn số 0 và số d đã chọn)

chọn số b có 6 cách chọn (Vì b ≠ a; b ≠ d nên b không được chọn lại số a, d đã chọn)

chọn số c có 5 cách chọn (Vì c ≠ a; c ≠ b; c ≠ d nên c không được chọn lại số a, b, d đã chọn)

áp dụng quy tắc nhân ta có số các số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau là: 4.6.6.5 = 720.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay