Quảng cáo
Trả lời:
Đáp án đúng là: A
Cứ hai đỉnh của đa giác n (n ≥ 3, n \( \in \) ℕ) đỉnh tạo thành một đoạn thẳng (bao gồn cả cạnh đa giác và đường chéo).
Khi đó số đường chéo là: \(C_n^2 - n\)
Theo giả thiết ta có: \(C_n^2 - n = 44 \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!.2!}} - n = 44\)
\( \Leftrightarrow \) n(n – 1) – 2n = 88
\( \Leftrightarrow \)n = 11 hoặc n = – 8.
Kết hợp với điều kiện n = 11 thoả mãn.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Vì 10 đội bóng thi đấu theo thể thức vòng tròn một lượt nên số trận đấu là \(C_{10}^2 = 45\) (trận).
Gọi số trận hòa là x, số không hòa là 45 – x (trận).
Tổng số điểm mỗi trận hòa là 2, tổng số điểm của trận không hòa là 3(45 – x).
Theo đề bài ta có phương trình 2x + 3(45 – x) = 130 \( \Leftrightarrow \) x = 5.
Vậy có 5 trận hòa.
Lời giải
Đáp án đúng là: D
Gọi số cần lập \(\overline {abcd} \), a ≠ 0.
chọn số d có 4 cách chọn (Vì \(\overline {abcd} \) là số lẻ nên d chỉ có thể chọn một trong 4 số 1; 3; 5; 7)
chọn số a có 6 cách chọn (Vì a ≠ 0; a ≠ d nên a không được chọn số 0 và số d đã chọn)
chọn số b có 6 cách chọn (Vì b ≠ a; b ≠ d nên b không được chọn lại số a, d đã chọn)
chọn số c có 5 cách chọn (Vì c ≠ a; c ≠ b; c ≠ d nên c không được chọn lại số a, b, d đã chọn)
áp dụng quy tắc nhân ta có số các số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau là: 4.6.6.5 = 720.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.