Câu hỏi:
18/08/2022 784Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Theo đề bài: Vì trong tập A không có 3 điểm nào thẳng hàng nên lấy bất kỳ 3 điểm của tập A sẽ tạo thành một tam giác và lấy 2 điểm bất kì của tập A sẽ tạo thành một đoạn thẳng. Số tam giác lập được là \(C_n^3\), số đoạn thẳng có thể tạo thành là \(C_n^2\). Theo bài ra ta có \(C_n^3 = 2C_n^2\) (1) (với n \( \in \)ℕ, n ≥ 3)
\[ \Leftrightarrow \frac{{n!}}{{3!\left( {n - 3} \right)!}} = 2\frac{{n!}}{{2!\left( {n - 2} \right)!}} \Leftrightarrow \frac{1}{6} = \frac{1}{{n - 2}} \Leftrightarrow n = 8\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 10 đội bóng thi đấu theo thể thức vòng tròn một lượt, thắng được 3 điểm, hòa 1 điểm, thua 0 điểm. Kết thúc giải đấu, tổng cộng số điểm của tất cả 10 đội là 130. Hỏi có bao nhiêu trận hòa ?
Câu 2:
Cho các số 0; 1; 2; 3; 4; 5; 6; 7 có thể lập được bao nhiêu số tự nhiên lẻ gồm 4 chữ số đôi một khác nhau
Câu 3:
Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?
Câu 4:
Cho các chữ số 2, 3, 4, 5, 6, 7, 8, 9 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là
Câu 5:
Tính giá trị \[M = A_{n - 15}^2 + 3A_{n - 14}^3\], biết rằng \[C_n^4 = 20C_n^2\]
Câu 6:
Có 10 quả cầu đỏ được đánh số từ 1 đến 10, 7 quả cầu xanh được đánh số từ 1 đến 7 và 8 quả cầu vàng được đánh số từ 1 đến 8. Hỏi có bao nhiêu cách lấy ra 3 quả cầu khác màu và khác số.
Câu 7:
Trong kho đèn trang trí đang còn 5 bóng đèn loại I, 7 bóng đèn loại II, các bóng đèn đều khác nhau về màu sắc và hình dáng. Lấy ra 5 bóng đèn bất kỳ. Hỏi có bao nhiêu khả năng xảy ra số bóng đèn loại I nhiều hơn số bóng đèn loại II?
về câu hỏi!