Câu hỏi:

15/02/2020 14,706

Cho hình chóp S.ABC, M và N là các điểm thuộc các cạnh SA và SB sao cho MA= 2SM, SN = 2NB,  là mặt phẳng qua MN và song song với SC. Kí hiệu (H1) và (H2) là các khối đa diện có được khi chia khối chóp S.ABC bới mặt phẳng  trong đó (H1) chứa điểm S, (H2) chứa điểm A; V1 và V2 lần lượt là thể tích của (H1) và (H2). Tính tỉ số V1V2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D.

Mp (α) qua MN và song song với SC. Mp (α) cắt BC và cắt AC tại P và Q ta có:

NP // SC nên   Ta có: MN, PQ, AB đồng quy tại E.

Áp dụng định lí Mennelauyt trong tam giác SAB, ta có:

Áp dụng định lí Menelauyt trong tam giác ABC ta có: 

Vậy 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A.

Gọi 

Lời giải

Chọn B.

Gọi O = ACBD. Vì ABCD là hình thoi nên BOAC(1). Lại do:

Từ (1) và (2) ta có:BO(SAC)

Ta có: 

Vì ABCD là hình thoi có ABC = 60° nên tam giác ABC đều cạnh a

Trong tam giác vuông SBO ta có: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP