Câu hỏi:

19/08/2025 5,174 Lưu

(1,0 điểm) Lớp 9A có 42 học sinh. Vừa qua lớp đã phát động phong trào tặng sách cho các bạn khó khăn ở vùng sâu. Tại buổi phát động, mỗi học sinh trong lớp đều tặng 3 quyển sách hoặc 5 quyển sách. Kết quả cả lớp đã tặng được 146 quyển sách. Hỏi lớp 9A có bao nhiêu bạn tặng 3 quyển sách và bao nhiêu bạn tặng 5 quyển sách?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số học sinh tặng 3 quyển sách của lớp 9A là x (x ℕ*) (bạn).

Số học sinh tặng 5 quyển sách của lớp 9A là y (y ℕ*)  (bạn).

Vì lớp 9A có 42 học sinh nên ta có phương trình: x + y = 42 (1)

Vì cả lớp 9A đã tặng được 146 quyển sách nên ta có phương trình:

3x + 5y = 146 (2)

Từ (1) và (2), ta có hệ phương trình:

Ûx+y=423x+5y=146

3x+3y=126    (3)3x+5y=146    (4)

Ta lấy phương trình (4) trừ phương trình (3) vế theo vế ta được phương trình:

2y = 20

Û y = 10 (thỏa mãn)

Thay y = 10 vào phương trình (1) ta được:

x + 10 = 42 Û x = 32 (thỏa mãn)

Vậy lớp 9A có 32 bạn tặng 3 quyển sách và 10 bạn tặng 5 quyển sách.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(3,0 điểm) Cho đường tròn tâm O, bán kính R và điểm A ở ngoài đường tròn (O; R) sao cho AO > 2R. Kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi H là giao điểm của AO và BC. a) Chứng minh tứ giác ABOC nội tiếp và OH.OA = R2. b) Kẻ dây cung BD của đường tròn (O; R) song song với AO. Đoạn AD cắt (O; R) tại E (khác D). Gọi F là trung điểm của DE.   (ảnh 1)

a) Ta có: AB, AC là 2 tiếp tuyến

Þ AB ^ OB; AC ^ OC

Xét tứ giác ABOC có ABO^=ACO^=90°

Þ Hai điểm B và C cùng nằm trên đường tròn đường kính AO

Þ Tứ giác ABOC nội tiếp đường tròn đường kính AO.

Vì AB, AC là hai tiếp tuyến của (O) cắt nhau tại A

Nên AB = AC và OB = OC (tính chất hai tiếp tuyến cắt nhau)

Suy ra A và O cùng nằm trên đường trung trực của BC

Do đó AO là đường trung trực của BC.

Þ AO BC.

Xét ∆ABO vuông tại B ( ABO^=90°), BH ^ AO (BC ^ AO, H Î BC)

Theo hệ thức lượng trong tam giác vuông ta có:

OB2 = OH.OA

Þ OH.OA = R2.

b) F là trung điểm ED 

Þ OF ^ ED (liên hệ giữa dây cung và đường kính)

Xét tứ giác ABFO có ABO^=AFO^=90°

ABO^  AFO^  là hai góc có đỉnh kề nhau của tứ giác ABFO

Þ Tứ giác ABFO nội tiếp

Þ AFB^=AOB^  (hai góc nội tiếp cùng chắn cung AB)

BED^=BCD^  (2 góc cùng chắn cung BD) và BCD^=HBO^ (Tam giác OBC cân tại O).

=> BEF^+BFE^=BCD^+BFA^=HBO^+BOH^

HBO^+BOH^=90° (do ∆BHO vuông tại H).

Þ BEF^+BFE^=90°

EBF^=90°

Þ Tam giác BEF vuông tại B.

c) Xét ∆ABO và ∆ACO có :

AO chung,

OB = OC = R,

ABO^=ACO^=90°

Þ ∆ABO = ∆ACO (cạnh huyền – cạnh góc vuông)

Þ BAO^=CAO^  (hai góc tương ứng)

Mà BD // AO Þ BD ^ BC

Þ CBD^=90°

Þ CD là đường kính của (O)

Xét ∆BDC và ∆CBK có:

CD = BK = 2R,

BCK^=CBD^=90°,

BC chung,

Þ ∆BDC = ∆CBK (cạnh huyền – cạnh góc vuông)

Þ BD = CK

Ta có: ABD^=ABK^+KBD^=90°+KBD^ACK^=ACD^+DCK^=90°+DCK^

KBD^=DCK^  (hai góc nội tiếp cùng chắn cung DK)

ABD^=ACK^

Xét ∆ABD và ∆ACK có:

AB = AC (chứng minh câu a),

ABD^=ACK^ (chứng minh trên),

BD = CK

Þ ∆ABD = ∆ACK (c.g.c)

Þ BAD^=CAK^  (hai góc tương ứng)

Tam giác ABC có AB = AC (chứng minh trên)

Nên DABC cân tại A

 BAO^=CAO^ (tính chất tam giác cân)

 BAO^BAD^=CAO^CAK^

=> DAO^=KAO^

Þ AO là phân giác góc DAK.

Vậy AO là phân giác góc DAK.

Lời giải

x2 + 2mx + m2 + 2m – 2 = 0 có a = 1, b = 2m, c = m2 + 2m – 2

Ta có:

∆ = b2 – 4ac

= (2m)2 – 4.1.(m2 + 2m – 2)

= -8m + 8

a) Để phương trình (1) có hai nghiệm Û ∆ ≥ 0

Û −8m + 8 ≥ 0 Û m ≤ 1.

Vậy với m ≤ 1 thì phương trình (1) có hai nghiệm.

b) Với m ≤ 1, phương trình (1) có hai nghiệm x1, x2

Theo hệ thức Vi – ét ta có:

x1+x2=ba=2mx1x2=ca=m2+2m2

Ta có: x1x2 + x1 + x2 = 0

Û m2 + 2m – 2 – 2m = 0

Û m2 = 2

Û m = 2  (không thỏa mãn) hoặc m = -2  (thỏa mãn)

Vậy m = -2  thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP