Câu hỏi:
13/07/2024 9,753
(3,0 điểm) Cho đường tròn tâm O, bán kính R và điểm A ở ngoài đường tròn (O; R) sao cho AO > 2R. Kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi H là giao điểm của AO và BC.
a) Chứng minh tứ giác ABOC nội tiếp và OH.OA = R2.
b) Kẻ dây cung BD của đường tròn (O; R) song song với AO. Đoạn AD cắt (O; R) tại E (khác D). Gọi F là trung điểm của DE. Chứng minh tứ giác ABFO nội tiếp và tam giác BEF vuông.
c) Kẻ đường kính BK của đường tròn (O; R). Chứng minh tia AO là phân giác của góc DAK.
(3,0 điểm) Cho đường tròn tâm O, bán kính R và điểm A ở ngoài đường tròn (O; R) sao cho AO > 2R. Kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi H là giao điểm của AO và BC.
a) Chứng minh tứ giác ABOC nội tiếp và OH.OA = R2.
b) Kẻ dây cung BD của đường tròn (O; R) song song với AO. Đoạn AD cắt (O; R) tại E (khác D). Gọi F là trung điểm của DE. Chứng minh tứ giác ABFO nội tiếp và tam giác BEF vuông.
c) Kẻ đường kính BK của đường tròn (O; R). Chứng minh tia AO là phân giác của góc DAK.
Câu hỏi trong đề: Đề thi Học kì 2 Toán 9 chọn lọc, có đáp án !!
Quảng cáo
Trả lời:

a) Ta có: AB, AC là 2 tiếp tuyến
Þ AB ^ OB; AC ^ OC
Xét tứ giác ABOC có
Þ Hai điểm B và C cùng nằm trên đường tròn đường kính AO
Þ Tứ giác ABOC nội tiếp đường tròn đường kính AO.
Vì AB, AC là hai tiếp tuyến của (O) cắt nhau tại A
Nên AB = AC và OB = OC (tính chất hai tiếp tuyến cắt nhau)
Suy ra A và O cùng nằm trên đường trung trực của BC
Do đó AO là đường trung trực của BC.
Þ AO ⊥ BC.
Xét ∆ABO vuông tại B ( ), BH ^ AO (BC ^ AO, H Î BC)
Theo hệ thức lượng trong tam giác vuông ta có:
OB2 = OH.OA
Þ OH.OA = R2.
b) F là trung điểm ED
Þ OF ^ ED (liên hệ giữa dây cung và đường kính)
Xét tứ giác ABFO có
Mà và là hai góc có đỉnh kề nhau của tứ giác ABFO
Þ Tứ giác ABFO nội tiếp
Þ (hai góc nội tiếp cùng chắn cung AB)
Mà (2 góc cùng chắn cung BD) và (Tam giác OBC cân tại O).
=>
Mà (do ∆BHO vuông tại H).
Þ
Þ Tam giác BEF vuông tại B.
c) Xét ∆ABO và ∆ACO có :
AO chung,
OB = OC = R,
Þ ∆ABO = ∆ACO (cạnh huyền – cạnh góc vuông)
Þ (hai góc tương ứng)
Mà BD // AO Þ BD ^ BC
Þ
Þ CD là đường kính của (O)
Xét ∆BDC và ∆CBK có:
CD = BK = 2R,
,
BC chung,
Þ ∆BDC = ∆CBK (cạnh huyền – cạnh góc vuông)
Þ BD = CK
Ta có:
Mà (hai góc nội tiếp cùng chắn cung DK)
Xét ∆ABD và ∆ACK có:
AB = AC (chứng minh câu a),
(chứng minh trên),
BD = CK
Þ ∆ABD = ∆ACK (c.g.c)
Þ (hai góc tương ứng)
Tam giác ABC có AB = AC (chứng minh trên)
Nên DABC cân tại A
(tính chất tam giác cân)
=>
Þ AO là phân giác góc DAK.
Vậy AO là phân giác góc DAK.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Diện tích tấm tôn hình chữ nhật kích thước 50cm x 189cm là:
50 . 189 = 9450 (cm2)
Diện tích xung quanh của hình trụ được tính như sau:
S = 2prh
Mà tấm tôn hình chữ nhật cuộn tròn lại thành mặt xung quanh của một hình trụ cao 50 cm nên diện tích của tấm tôn chính là diện tích xung quang của hình trụ.
Do đó ta có: 2pr.50 = 9450
Þ 2pr = 189
Þ r = ≈ 30 (cm).
Vậy bán kính hình tròn đáy là khoảng 30 cm.
Thể tích hình trụ là:
V = pr2.h ≈ p.302.50 ≈ 141 372 (cm3).
Lời giải
x2 + 2mx + m2 + 2m – 2 = 0 có a = 1, b = 2m, c = m2 + 2m – 2
Ta có:
∆ = b2 – 4ac
= (2m)2 – 4.1.(m2 + 2m – 2)
= -8m + 8
a) Để phương trình (1) có hai nghiệm Û ∆ ≥ 0
Û −8m + 8 ≥ 0 Û m ≤ 1.
Vậy với m ≤ 1 thì phương trình (1) có hai nghiệm.
b) Với m ≤ 1, phương trình (1) có hai nghiệm x1, x2
Theo hệ thức Vi – ét ta có:
Ta có: x1x2 + x1 + x2 = 0
Û m2 + 2m – 2 – 2m = 0
Û m2 = 2
Û m = (không thỏa mãn) hoặc m = (thỏa mãn)
Vậy m = thỏa mãn yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.