(3,0 điểm) Cho đường tròn tâm O, bán kính R và điểm A ở ngoài đường tròn (O; R) sao cho AO > 2R. Kẻ 2 tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi H là giao điểm của AO và BC.
a) Chứng minh tứ giác ABOC nội tiếp và OH.OA = R2.
b) Kẻ dây cung BD của đường tròn (O; R) song song với AO. Đoạn AD cắt (O; R) tại E (khác D). Gọi F là trung điểm của DE. Chứng minh tứ giác ABFO nội tiếp và tam giác BEF vuông.
c) Kẻ đường kính BK của đường tròn (O; R). Chứng minh tia AO là phân giác của góc DAK.