Đề thi Học kì 2 Toán 9 chọn lọc, có đáp án (Đề 15)
33 người thi tuần này 5.0 10.8 K lượt thi 4 câu hỏi 90 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến độ dài cung tròn, diện tích hình quạt tròn và hình vành khuyên có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Vì 2 > 0 nên hàm số đồng biến khi x > 0 và nghịch biến khi x < 0.
b) Bảng giá trị.
x |
−1 |
|
0 |
|
1 |
y = 2x2 |
2 |
|
0 |
|
2 |
Trên mặt phẳng tọa độ lấy các điểm: A(−1; 2); B; O(0; 0), C; D(1; 2).

Lời giải
a) Phương trình x2 + 4x + m + 1 = 0 có:
a = 1, b = 4, c = m + 1, b’ = = 2.
b) Thay m = −6 vào phương trình (1), ta được phương trình: x2 + 4x – 5 = 0
Û x2 – x + 5x – 5 = 0
Û x(x – 1) + 5(x – 1) = 0
Û (x – 1)(x + 5) = 0
Û
Û
Vậy tập nghiệm phương trình (1) là S = {1; −5}.
c) x2 + 4x + m + 1 = 0
∆ = b2 – 4ac = 42 – 4.1.(m + 1)
= 16 – 4m – 4 = 12 – 4m
Để phương trình (1) có nghiệm thì ∆ ≥ 0 Û 12 – 4m ≥ 0
Û 4m ≤ 12 Û m ≤ 3.
Vậy với m ≤ 3 thì phương trình (1) có nghiệm.
d) Theo định lý Vi-et, ta có:
S = x1 + x2 = = −4;
P = x1x2 = = m + 1.
Ta có: x12 + x22 = 10
Û (x1 + x2)2 – 2x1x2 = 10
Û (−4)2 – 2.(m + 1) = 10
Û 2(m + 1) = 6
Û m + 1 = 3 Û m = 2.
Vậy để phương trình (1) có hai nghiệm thỏa mãn yêu cầu bài toán thì m = 2.
Lời giải

Ta có: = 90° (AD ^ BC, H Î AD)
= 90° (BK ^ AC, H Î BK)
Suy ra = 180°
Vậy tứ giác CDHK nội tiếp.
b) Ta có ∆ABC nội tiếp đường tròn tâm O nên A, B, C Î (O).
AD cắt đường tròn (O) tại E suy ra E Î (O).
Do đó tứ giác ABEC nội tiếp.
Vậy (hai góc cùng chắn cung CE).
c) Xét ∆ADC và ∆BKC, có:
chung
Do đó ∆ADC ∆BKC (g.g)
Suy ra (hai góc tương ứng)
Mà (cmt) nên
Do đó BC là tia phân giác của .
Lời giải
Diện tích xung quanh của một hình trụ là:
2p.5.6 = 60p (cm2)
Vậy diện tích xung quanh của hình trụ là 60p cm2.