Dạng 1. Sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu.
35 người thi tuần này 4.6 3.8 K lượt thi 4 câu hỏi 45 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Xét hình bình hành ABCD có AC = 8 cm; BD = 6 cm ( h.6)
Gọi O là giao điểm hai đường chéo. Kẻ BH vuông góc với AC .
Ta có : SABCD = 2SABC = AC.BH
Ta có AC = 8cm, BH ≤ BO = 3cm. Do đó :
SABCD ≤ 8.3 = 24 (cm2)
SABCD = 24 cm2 BH ≡ BO H ≡ O BD vuông góc với AC
Vậy max SABCD = 24 cm2 . Khi đó hình bình hành ABCD là hình thoi (h.7) có diện tích 24cm2.
Lời giải
Tam giác HAE = tam giác EBF = tam giác FCG = tam giác GHD
HE = EF = FG = GH
EFGH là hình thoi .
EFGH là hình vuông
Gọi O là giao điểm của AC và EG . Tứ giác AECG có AE = CG, AE //CG nên là hình bình hành suy ra O là trung điểm của AC và EG , do đó O là tâm của cả hai hình vuông ABCD và EFGH.
DHOE vuông cân : HE2 = 2OE2 HE = OE
Chu vi EFGH = 4HE = 4 OE . Do đó chu vi EFGH nhỏ nhất OE nhỏ nhất
Kẻ OK vuông góc với AB OE ≥OK ( OK không đổi )
OE = OK E ≡ K
Do đó min OE = OK
Như vậy, chu vi tứ giác EFGH nhỏ nhất khi và chỉ khi E,F,G,H là trung điểm của AB , BC, CD, DA.
Lời giải
Gọi K là giao điểm của CM và DB
MA = MB ; ,
Tam giác MAC = MBK MC = MK
Mặt khác DM vuông góc với CK
tam giác DCK cân
Kẻ MH vuông góc với CD .
Tam giác MHD = MBD MH = MB = a
SMCD =CD.MH ≥ AB.MH = 2a.a= a2
SMCD = a2 CD vuông góc với Ax khi đó = 450 ; =450.
Vậy min SMCD = a2 . Các điểm C,D được xác định trên Ax; By sao cho AC = BD =a .
Lời giải
Gọi S là diện tích DABC Khi D di chuyển trên cạnh BC ta có :
SABD + SACD = S
Kẻ BE vuông góc AD , CF vuông góc AD
AD.BE +AD.CF = S
BE +CF =
Do đó BE + CF lớn nhất AD nhỏ nhất hình chiếu HD nhỏ nhất
Do HD ≥ HB ( do >900 ) và HD = HB D ≡ B
Vậy Khi D ≡ B thì tổng các khoảng cách từ B và C đến AD có giá trị lớn nhất .