Dạng 2. Sử dụng quan hệ giữa đường thẳng và đường gấp khúc.
22 người thi tuần này 4.6 4.9 K lượt thi 2 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
15 câu Trắc nghiệm Toán 9 Chân trời sáng tạo Bài 1. Phương trình quy về phương trình bậc nhất một ẩn có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Kẻ tia Om nằm ngoài góc xOy sao cho . Trên tia Om lấy điểm D sao cho OD = OA . Các điểm D và A cố định .
OD =OA, OC = OB ,
Tam giác DOC = tam giác AOB CD = AB
Do đó AC +AB = AC +CD
Mà AC +CD ≥ AD
AC +AB ≥ AD
Xảy ra đẳng thức khi và chỉ khi C thuộc AD
Vậy min(AC+AB) =AD . Khi đó C là giao điểm của AD và Oy, B thuộc tia Ox sao cho OB = OC.
Lời giải

Gọi I ,K, L theo thứ tự là trung điểm của EF, EG , EH (h.12).
tam giác AEF vuông tại A có AI là trung tuyến
Tam giác CGH vuông tại C có CM là trung tuyến
IK là đường trung bình của DEFG
KM là đường trung bình của DEGH
Do đó : chu vi EFGH = EF +FG +GH +EH =2(AI + IK + KM + MC)
Ta lại có : AI + IK + KM + MC ≥ AC
Suy ra chu vi EFGH ≥ 2AC ( độ dài AC không đổi )
Chu vi EFGH nhỏ nhất bằng 2AC Û A,I,K,M,C thẳng hàng.
Khi đó ta có EH//AC,FG//AC, nên EF//DB , tương tự GH//DB . Suy ra tứ giác EFGH là hình bình hành có các cạnh song song với các đường chéo của hình chữ nhật ABCD (h.13).