Dạng 4. Sử dụng bất đẳng thức về lũy thừa bậc hai .
22 người thi tuần này 4.6 3.7 K lượt thi 2 câu hỏi 45 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Tam giác AHE = tam giác BEF = tam giác CFG = tam giác DGH
HE = EF = FG = GH , HEF = 900
HEFG là hình vuông nên chu vi EFGH nhỏ nhất khi HE nhỏ nhất .
Đặt AE = x thì HA = EB = 4-x
Tam giác HAE vuông tại A nên :
HE 2 = AE2 +AE2 = x2 + (4 - x)2 = 2x2 - 8x +16 = 2(x - 2)2 +8 ≥ 8
HE = =2 x = 2
Chu vi tứ giác EFGH nhỏ nhất bằng 8 cm , khi đó AE = 2 cm .
Lời giải

Đặt AD = x thì ME = x
ME //ABAE = 8 -x
Ta có : SADME = AD .AE = x ( 8 - x ) = 8x - x2 = -(x - 3)2 +12 ≤ 12
SADME = 12 cm2 x =3
Diện tích lớn nhất của tứ giác ADME bằng 12 cm2 ,khi đó D là trung điểm của AB , M là trung điểm của BC và E là trung điểm của AC.
741 Đánh giá
50%
40%
0%
0%
0%