Câu hỏi:

20/10/2022 1,603

Cho hình vuông ABCD có cạnh bằng 4cm. Trên các cạnh AB, BC,CD,DA, lấy theo thứ tự các điểm E,F,G,H sao cho AE = BF = CG = DH . Tính độ dài AE sao cho tứ giác EFGH có chu vi nhỏ nhất.

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Tam giác AHE = tam giác BEF = tam giác CFG = tam giác DGH

HE = EF = FG = GH , HEF = 900

HEFG là hình vuông nên chu vi EFGH nhỏ nhất khi HE nhỏ nhất .

Đặt AE = x thì HA = EB = 4-x

Tam giác HAE vuông tại A nên :

HE 2 = AE2 +AE2 = x2 + (4 - x) = 2x2 - 8x +16    = 2(x - 2)2 +8 ≥ 8

HE = 8  =22 x = 2

Chu vi tứ giác EFGH nhỏ nhất bằng 82 cm , khi đó AE = 2 cm .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác vuông ABC có độ dài các cạnh góc vuông AB = 6 cm, AC = 8cm. M là điểm di chuyển trên cạnh huyền BC. Gọi D và E là chân các đường vuông góc kẻ từ M đến AB và AC . Tính diện tích lớn nhất của tứ giác ADME.

Xem đáp án » 11/07/2024 3,021

Bình luận


Bình luận