Câu hỏi:

11/07/2024 3,881

Cho tam giác vuông ABC có độ dài các cạnh góc vuông AB = 6 cm, AC = 8cm. M là điểm di chuyển trên cạnh huyền BC. Gọi D và E là chân các đường vuông góc kẻ từ M đến AB và AC . Tính diện tích lớn nhất của tứ giác ADME.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

Media VietJack
ADME là hình chữ nhật .

Đặt AD = x thì ME = x

ME //AB  EMAB=CECAx6=CE8CE=43xEMAB=CECAx6=CE8CE=43x

AE = 8 -4343x

Ta có : SADME  = AD .AE = x ( 8 -4343 x ) = 8x -4343 x2 = -4343(x - 3)2 +12 ≤ 12

SADME  = 12 cm2 x =3

Diện tích lớn nhất của tứ giác ADME bằng 12 cm2 ,khi đó D là trung điểm của AB , M là trung điểm của BC và E là trung điểm của AC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vuông ABCD có cạnh bằng 4cm. Trên các cạnh AB, BC,CD,DA, lấy theo thứ tự các điểm E,F,G,H sao cho AE = BF = CG = DH . Tính độ dài AE sao cho tứ giác EFGH có chu vi nhỏ nhất.

Xem đáp án » 20/10/2022 1,889