3 câu Trắc nghiệm Toán 9 Bài 6: Tính chất hai tiếp tuyến cắt nhau có đáp án (Vận dụng cao)
38 người thi tuần này 4.6 1.8 K lượt thi 3 câu hỏi 10 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
123 bài tập Nón trụ cầu và hình khối có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án A
* Vì ME là tiếp tuyến của (O) nên ME vuông góc với OE, suy ra tam giác MOE nội tiếp đường tròn đường kính MO (1)
Vì MF là tiếp tuyến của (O) nên MF vuông góc với OF, suy ra tam giác MOF nội tiếp đường tròn đường kính MO (1)
Từ (1) và (2) suy ra M, E, O, F cùng thuộc một đường tròn.
* Gọi MO EF = {H}
Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)
ME = MF (tính chất) mà OE = OF = R (gt)
MO là đường trung trực của EF
MO EF
Gọi G là giao điểm của tia DF và tia EM
Ta có (góc nội tiếp chắn nửa đường tròn) EF DG mà
EF OM (cmt) OM // DG (từ vuông góc đến song song)
Tam giác EDG có OE = OD; OM // DG ME = MG (tính chất đường trung bình)
Áp dụng định lý Ta-lét cho tam giác EDM có OK // ME (cùng vuông góc với ED) ta được: (3)
Áp dụng định lý Ta-lét cho tam giác MDG có PF// MG (cùng vuông góc với ED) ta được: (4)
Từ (3) và (4) suy ra mà ME = MG (cmt)
PK = PF P là trung điểm của FK. Suy ra
Lời giải
Đáp án D
Ta có D đối xúng với B qua O B là đường kính của (O) mà E (O)
Xét BED và ABD có: , chung
(góc nội tiếp chắn nửa đường tròn)
(AO là trung trực của BC)
Xét BCD và AHB có: (BA là tiếp tuyến của (O) tại B)
mà
Xét BHE và DCE có
(2 góc tương tứng)
Mà (chứng minh trên)
Vậy
Lời giải
Đáp án D
* Vì ME là tiếp tuyến của (O) nên ME vuông góc với OE, suy ra tam giác MOE nội tiếp đường tròn đường kính MO (1)
Vì MF là tiếp tuyến của (O) nên MF vuông góc với OF, suy ra tam giác MOF nội tiếp đường tròn đường kính MO (1)
Từ (1) và (2) suy ra M, E, O, F cùng thuộc một đường tròn nên A đúng
* Gọi MO EF = {H}
Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)
ME = MF (tính chất) mà OE = OF = R (gt)
MO là đường trung trực của EF
Vì OI = OF = R nên tam giác OIF cân tại O
mà
FI là phân giác của (1)
Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)
MI là phân giác của (tính chất) (2)
Từ (1) và (2) I là tâm đường tròn nội tiếp tam giác MEF
356 Đánh giá
50%
40%
0%
0%
0%