Câu hỏi:

25/04/2021 2,071

Cho đường tròn (O; R). Từ một điểm M nằm ngoài đường tròn kẻ các tiếp tuyến ME, MF đến đường tròn với (E; F là tiếp điểm). Đoạn OM cắt đường tròn (O; R) tại I. Kẻ đường kính ED của (O; R). Hạ FK vuông góc với ED. Gọi P là giao điểm của MD và FK. Cho FK = 4cm. Khi đó:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

* Vì ME là tiếp tuyến của (O) nên ME vuông góc với OE, suy ra tam giác MOE nội tiếp đường tròn đường kính MO (1)

Vì MF là tiếp tuyến của (O) nên MF vuông góc với OF, suy ra tam giác MOF nội tiếp đường tròn đường kính MO (1)

Từ (1) và (2) suy ra M, E, O, F cùng thuộc một đường tròn.

* Gọi MO  EF = {H}

Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)

 ME = MF (tính chất) mà OE = OF = R (gt)

 MO là đường trung trực của EF

 MO  EF

Gọi G là giao điểm của tia DF và tia EM

Ta có EFD^ = 90o (góc nội tiếp chắn nửa đường tròn)  EF  DG mà

EF  OM (cmt)  OM // DG (từ vuông góc đến song song)

Tam giác EDG có OE = OD; OM // DG  ME = MG (tính chất đường trung bình)

Áp dụng định lý Ta-lét cho tam giác EDM có OK // ME (cùng vuông góc với ED) ta được: PKME=DPDM (3)

Áp dụng định lý Ta-lét cho tam giác MDG có PF// MG (cùng vuông góc với ED) ta được: PFMG=DPDM (4)

Từ (3) và (4) suy ra PKME=PFMG mà ME = MG (cmt)

 PK = PF  P là trung điểm của FK. Suy ra FP = PK =42= 2cm

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Ta có D đối xúng với B qua O  B là đường kính của (O) mà E (O)  BED^ = 90o

Xét BED và ABD có: BED^ = ABD^ = 90o, D^ chung

 BED  ABD (g  g)DEBE=BDBA

BCD^ = 90o (góc nội tiếp chắn nửa đường tròn)

AHB^ = 90o (AO là trung trực của BC)

Xét BCD và AHB có: BCD^ = AHB^ = 90o, BDC^ = ABH^ (BA là tiếp tuyến của (O) tại B)

ΔBCDΔAHB(g  g)BDBA=CDBH mà DEBE=BDBADEBE=CDBH

Xét BHE và DCE có DEBE=CDBH

 BHE  DCE  BEH^ = DEC^ (2 góc tương tứng)

 BEH^ + HED^ = DEC^ + HED^BED^ = HEC^

BED^ = 90o (chứng minh trên)

Vậy HEC^ = 90o

Câu 2

Cho đường tròn (O; R). Từ một điểm M nằm ngoài đường tròn kẻ các tiếp tuyến ME, MF đến đường tròn với (E; F là tiếp điểm). Đoạn OM cắt đường tròn (O; R) tại I. Kẻ đường kính ED của (O; R). Hạ FK vuông góc với ED. Gọi P là giao điểm của MD và FK. Chọn câu đúng:

Lời giải

Đáp án D

* Vì ME là tiếp tuyến của (O) nên ME vuông góc với OE, suy ra tam giác MOE nội tiếp đường tròn đường kính MO (1)

Vì MF là tiếp tuyến của (O) nên MF vuông góc với OF, suy ra tam giác MOF nội tiếp đường tròn đường kính MO (1)

Từ (1) và (2) suy ra M, E, O, F cùng thuộc một đường tròn nên A đúng

* Gọi MO  EF = {H}

Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)

 ME = MF (tính chất) mà OE = OF = R (gt)

 MO là đường trung trực của EF

 MO  EFIFE^+OIF^= 90o

Vì OI = OF = R nên tam giác OIF cân tại O

OIF^=OFI^ mà MFI^+OFI^ = 90o; IFE^+OIF^ = 90o

 MFI^ = IFE^

 FI là phân giác của MFE^ (1)

Vì M là giao điểm của hai tiếp tuyến ME và MF của (O)

 MI là phân giác của EMF^ (tính chất) (2)

Từ (1) và (2)  I là tâm đường tròn nội tiếp tam giác MEF

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay