Câu hỏi:

20/10/2022 829

Cho góc xOy^ và điểm A nằm trong góc đó. Xác định điểm B thuộc tia Ox, điểm C thuộc tia Oy sao cho OB = OC và tổng AB +AC là nhỏ nhất .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Kẻ tia Om nằm ngoài góc xOy sao cho yOm^=xOA^  . Trên tia Om lấy điểm D sao cho OD = OA . Các điểm D và A cố định .

OD =OA, OC = OB ,  COD^=BOA^

Tam giác DOC = tam giác AOB CD = AB

Do đó AC +AB = AC +CD

Mà AC +CD ≥ AD

AC +AB   ≥ AD

Xảy ra đẳng thức khi và chỉ khi C thuộc AD

Vậy min(AC+AB) =AD . Khi đó C là giao điểm của AD và Oy, B thuộc tia Ox sao cho OB = OC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi I ,K, L theo thứ tự là trung điểm của EF, EG , EH (h.12).

tam giác AEF vuông tại A có AI là trung tuyến  AI=12EF

Tam giác CGH vuông tại C có CM là trung tuyến  CM=12GH

IK là đường trung bình của DEFG IK=12FG

KM là đường trung bình của DEGH  KM=12EH

Do đó : chu vi EFGH = EF +FG +GH +EH =2(AI + IK + KM + MC)

Ta lại có : AI + IK + KM + MC ≥ AC

Suy ra chu vi EFGH ≥ 2AC ( độ dài AC không đổi )

Chu vi EFGH nhỏ nhất bằng 2AC Û A,I,K,M,C thẳng hàng.

Khi đó ta có EH//AC,FG//AC, AEI^=EAI^=ADB^  nên EF//DB , tương tự GH//DB . Suy ra tứ giác EFGH là hình bình hành có các cạnh song song với các đường chéo của hình chữ nhật ABCD (h.13).