Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

a)  4xy=5     (1)3x+y=9    (2)

Cộng phương trình (1) và (2) vế theo vế ta được:

7x = 14 Û x = 2.

Thay x = 2 vào phương trình (1) ta được: 4.2 – y = 5 Û y = 3.

Vậy hệ phương trình có nghiệm là (2; 3).

b) x2 + 4x – 5 = 0

Û x2 – x + 5x – 5 = 0

Û x(x – 1) + 5(x – 1) = 0

Û (x + 5).(x – 1) = 0

Û  x+5=0x1=0 Û  x=5x=1.

Vậy tập nghiệm của phương trình đã cho là S = {1; −5}.

Lời giải

a) Bảng giá trị

x

−1

 -12

0

12

1

y = 2x2

2

12

0

12

2

 

Trên mặt phẳng tọa độ lấy các điểm: A(−1; 2); B 12;12; O(0; 0); C 12;12; D(1; 2).

a) Vẽ đồ thị của hàm số y = 2x2. b) Gọi x1, x2 là hai nghiệm của phương trình bậc hai ẩn x:  x2 – (3m + 1)x + 2m2 + m – 1 = 0 (Với m là tham số).  Tìm giá trị của m sao cho: x12 + x22 – 3x1x2 = 4. (ảnh 1)

b) x2 – (3m + 1)x + 2m2 + m – 1 = 0 (a = 1, b = −(3m + 1), c = 2m2 + m – 1)

Ta có: ∆ = b2 – 4ac = [−(3m + 1)]2 – 4(2m2 + m – 1)

= 9m2 + 6m + 1 – 8m2 – 4m + 4

= m2 + 2m + 5

= m2 + 2m + 1 + 4

= (m + 1)2 + 4 > 0

Vì ∆ > 0 nên phương trình có hai nghiệm phân biệt với mọi m.

Theo định lý Vi-ét, ta có:x1+x2=ba=3m+1x1x2=ca=2m2+m1

 

Theo đề bài, ta có: x12 + x22 – 3x1x2 = 4

Û (x1 + x2)2 – 2x1x2 – 3x1x2 = 4

Û (3m + 1)2 – 5(2m2 + m – 1) = 4

Û 9m2 + 6m + 1 – 10m2 – 5m + 5 – 4 = 0

Û −m2 + m + 2 = 0

Û m2 – m – 2 = 0

Û m2 – 2m + m – 2 = 0

Û (m – 2)(m + 1) = 0

Û  m2=0m+1=0 

Û  m2=0m+1=0.

Vậy giá trị của m thỏa mãn yêu cầu bài toán là: m = 2; m = −1.

Lời giải

Gọi số tự nhiên thứ nhất cần tìm là x (x > 0).

Số tự nhiên thứ hai cần tìm là x – 3.

Theo đề bài, tích của hai số tự nhiên bằng 108 nên ta có phương trình:

x(x – 3) = 108

Û x2 – 3x – 108 = 0

Û x2 + 9x – 12x – 108 = 0

Û x(x + 9) – 12(x + 9) = 0

Û (x + 9)(x – 12) = 0

Û  x+9=0x12=0

Û  x=9  (KTM)x=12  (TM) 

Vậy số tự nhiên thứ nhất cần tìm là 12 và số tự nhiên thứ hai cần tìm là 12 – 3 = 9.

5.0

1 Đánh giá

100%

0%

0%

0%

0%