Câu hỏi:

08/09/2022 3,811

Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Kẻ đường cao AH. Từ điểm H kẻ HM vuông góc với AB (M Î AB) và HN vuông góc với AC (N Î AC).

a) Chứng minh: Tứ giác AMHN nội tiếp.

b) Chứng minh:  AMN^=ACB^

c) Tia MN cắt đường tròn (O) tại điểm D. Chứng minh: AD2 = AN.AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Kẻ đường cao AH. Từ điểm H kẻ HM vuông góc với AB (M  AB) và HN vuông góc với AC .  (ảnh 1)

a) Ta có: HM ^ AB Þ  HMB^=HMA^=90°

HN ^ AC Þ  HNA^=HNC^=90°

Xét tứ giác AMHN có  HMA^+HNA^= 90° + 90° = 180°.

Mà hai góc nằm ở vị trí đối nhau.

Do đó tứ giác AMHN nội tiếp.

b) Ta có  AMN^=AHN^ (chứng minh trên)

Suy ra  AHN^+NHC^AHC^= 90°

Mà  NHC^+NCH^= 90° (∆HNC có  HNC^= 90°)

Nên  AHN^=NCH^ hay  AHN^=ACB^ 

Mà  AMN^=AHN^ 

Do đó  ACB^=AMN^.

c) Ta có  AMN^+BMN^=180° 

Suy ra  ACB^+BMN^ = 180° hay  BMN^+BCN^ = 180°

Do đó tứ giác BMNC nội tiếp.

Suy ra  MBC^+MNC^= 180° hay  ABC^+MNC^ = 180°

Mà tứ giác ADCB nội tiếp đường tròn (O) nên  ABC^+ADC^ = 180°.

Suy ra  MNC^=ADC^ mà  AND^=MNC^ (hai góc đối đỉnh)

Do đó  AND^=ADC^

Xét ∆AND và ∆ADC có:

 CAD^ chung

 AND^=ADC^(cmt)

Do đó ∆AND  ∆ADC (g.g)

Suy ra  ANAD=ADAC

Do đó AD2 = AN.AC (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)  4xy=5     (1)3x+y=9    (2)

Cộng phương trình (1) và (2) vế theo vế ta được:

7x = 14 Û x = 2.

Thay x = 2 vào phương trình (1) ta được: 4.2 – y = 5 Û y = 3.

Vậy hệ phương trình có nghiệm là (2; 3).

b) x2 + 4x – 5 = 0

Û x2 – x + 5x – 5 = 0

Û x(x – 1) + 5(x – 1) = 0

Û (x + 5).(x – 1) = 0

Û  x+5=0x1=0 Û  x=5x=1.

Vậy tập nghiệm của phương trình đã cho là S = {1; −5}.

Lời giải

Gọi số tự nhiên thứ nhất cần tìm là x (x > 0).

Số tự nhiên thứ hai cần tìm là x – 3.

Theo đề bài, tích của hai số tự nhiên bằng 108 nên ta có phương trình:

x(x – 3) = 108

Û x2 – 3x – 108 = 0

Û x2 + 9x – 12x – 108 = 0

Û x(x + 9) – 12(x + 9) = 0

Û (x + 9)(x – 12) = 0

Û  x+9=0x12=0

Û  x=9  (KTM)x=12  (TM) 

Vậy số tự nhiên thứ nhất cần tìm là 12 và số tự nhiên thứ hai cần tìm là 12 – 3 = 9.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay