Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Môn học
Chương trình khác
8339 lượt thi 6 câu hỏi 45 phút
9241 lượt thi
Thi ngay
5737 lượt thi
4960 lượt thi
3529 lượt thi
6629 lượt thi
4296 lượt thi
4897 lượt thi
3221 lượt thi
7887 lượt thi
3583 lượt thi
Câu 1:
Cho phương trình: 3x2 + 5x – 6 = 0 (x là ẩn)
a) Chứng minh phương trình có 2 nghiệm phân biệt. Tính tổng và tích 2 nghiệm của phương trình.
b) Không giải phương trình, hãy tính giá trị của biểu thức sau:
A = x12 + x1 + x2 + x22 −
Câu 2:
Cho hàm số y = −12x2 có đồ thị (P) và hàm số y = x – 4 có đồ thị (D).
a) Vẽ (P) và (D) trên cùng hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D) bằng phép toán.
Câu 3:
Giải bài toán bằng cách lập hệ phương trình:
Trong kỳ thi học kì I môn toán lớp 9, một phòng thi của trường có 24 thí sinh dự thi. Các thí sinh đều phải làm bài trên giấy thi của trường phát cho, cuối buổi thi, sau khi thu bài, giám thị coi thi đếm được tổng số tờ là 59 tờ giấy thi. Hỏi trong phòng thi có bao nhiêu thí sinh làm bài 2 tờ giấy thi, bao nhiêu thí sinh làm bài 3 tờ giấy thi? Biết rằng có 3 thí sinh chỉ làm 1 tờ giấy thi.
Câu 4:
Công ty A thực hiện một cuộc khảo sát để tìm hiểu về mối liên hệ giữa y (sản phẩm) là số lượng sản phẩm T bán ra với x (đồng) là giá bán ra của mỗi sản phẩm T và nhận thấy rằng y = ax + b (a, b là hằng số). Biết giá bán là 500 000 đồng một sản phẩm thì số lượng sản phẩm bán ra là 1 300 (sản phẩm); với giá bán 540 000 đồng một sản phẩm thì số lượng sản phẩm bán ra là 1 600 (sản phẩm).
a) Xác định a, b.
b) Bằng phép tính, hãy tính số lượng sản phẩm bán ra với giá bán là 480 000 đồng một sản phẩm?
Câu 5:
Người ta thả một quả trứng vào cốc thủy tinh hình trụ có chứa nước, trứng chìm hoàn toàn xuống đáy cốc. Hỏi thể tích quả trứng dó là bao nhiêu cm3? (làm tròn đến hàng đơn vị). Biết cốc thủy hình trụ có đường kính đáy 10 cm và nước trong cốc dâng thêm 7,5 mm.
(Công thức tính thể tích hình trụ: V = pr2h, với r là bán kính đáy và h là chiều cao của hình trụ.)
Câu 6:
Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O) và 2 đường cao BD, CE cắt nhau tại H (D Î AC, E Î AB).
a) Chứng minh tứ giác BEDC nội tiếp.
b) Vẽ đường kính AM của đường tròn (O), AH cắt BC tại F (F Î BC).
Chứng minh: AB.AC = AF.AM
c) Tia DE và CB cắt nhau tại K. AK cắt đường tròn (O) tại N. Chứng minh: N, H, M thẳng hàng.
1 Đánh giá
100%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com