Câu hỏi:

22/08/2022 473 Lưu

Cho bất phương trình 2x + y – 6 < 0 (1). Điểm A là giao điểm của parabol (P) y = x2 và đường thẳng y = 5x – 4 . Biết A thuộc miền nghiệm của bất phương trình (1). Có bao nhiêu điểm A thỏa mãn?

A. 0;
B. 1;
C. 2;
D. Vô số.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Điểm A là giao điểm của parabol (P) y = x2 và đường thẳng y = 5x – 4 nên hoành độ của điểm A là nghiệm của phương trình:

x2 = 5x – 4 Û x2 – 5x + 4 = 0 Û \(\left[ \begin{array}{l}x = 1\\x = 4\end{array} \right.\)

Khi đó ta được hai điểm (1; 1) và (4; 16).

Xét điểm (1; 1) ta có: 2.1 + 1 – 6 = –3 < 0 nên (1; 1) là nghiệm của bất phương trình (1) do đó điểm A(1; 1) thuộc miền nghiệm của bất phương trình (1).

Xét điểm (4; 16) ta có: 2.4 + 16 – 6 = 18 > 0 nên (4; 16) không là nghiệm của bất phương trình (1) do đó điểm (4; 16) không thuộc miền nghiệm của bất phương trình (1).

Vậy có 1 điểm A(1; 1) thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

A. m \(\left[ {3\sqrt 2 - 7; + \infty } \right)\);
B. m \(\left( { - \infty ;3\sqrt 2 - 7} \right)\);
C. m \(\left( { - \infty ;7 - 3\sqrt 3 } \right)\);
D. m \(\left[ {7 - 3\sqrt 2 ; + \infty } \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Do điểm A(\(\sqrt 2 \); 1) thuộc miền nghiệm của bất phương trình, thay x = \(\sqrt 2 \) và y = 1 vào bất phương trình ta được:

\(3\sqrt 2 + m - 7 \ge 0 \Leftrightarrow m \ge 7 - 3\sqrt 2 \)

Vậy với \(m \in \left[ {7 - 3\sqrt 2 ; + \infty } \right)\) thì bất phương trình 3x + my − 7 ≥ 0 có miền nghiệm chứa điểm A(\(\sqrt 2 \); 1).

Ta chọn phương án D.

Câu 3

A. 0 ≤ m ≤ 1;
B. m ≤ \(\frac{1}{8}\) ;
C. \(\frac{1}{8}\) ≤ m ≤ 1;
D. m ≥ \(\frac{1}{8}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP