Câu hỏi:

22/08/2022 1,249

Có ba nhóm máy A, B, C dùng để sản xuất ra hai loại sản phẩm I và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:

Nhóm

Số máy trong mỗi nhóm

Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm

Loại I

Loại II

A

10

2

2

B

4

0

2

C

12

2

4

Gọi x, y (x, y ≥ 0) lần lượt là số đơn vị sản phẩm loại I và loại II sản xuất. Các bất phương trình mô tả số đơn vị sản phẩm loại I và loại II sản xuất là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Để sản xuất một đơn vị sản phẩm loại I thì cần 2 máy nhóm A và 2 máy nhóm C nên để sản xuất x đơn vị sản phẩm loại I thì cần 2x máy nhóm A và 2x máy nhóm C.

Để sản xuất một đơn vị sản phẩm loại II thì cần 2 máy nhóm A, 2 máy nhóm B và 4 máy nhóm C nên để sản xuất y đơn vị sản phẩm loại II thì cần 2y máy nhóm A, 2y máy nhóm B và 4y máy nhóm C.

Mà có tất cả 10 máy nhóm A nên ta có: 2x + 2y ≤ 10 Û x + y – 5 ≤ 0.

Có tất cả 4 máy nhóm B nên ta có: 2y ≤ 4 Û y ≤ 2.

Có tất cả 12 máy nhóm C nên ta có: 2x + 4y ≤ 12 Û x + 2y – 6 ≤ 0.

Vậy ta có các bất phương trình:

x ≥ 0;

0 ≤ y ≤ 2;

x + y – 5 ≤ 0;

x + 2y – 6 ≤ 0.

Ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Tất cả các giá trị thực của tham số m để bất phương trình 3x + my − 7 ≥ 0 có miền nghiệm chứa điểm A(\(\sqrt 2 \); 1) là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Do điểm A(\(\sqrt 2 \); 1) thuộc miền nghiệm của bất phương trình, thay x = \(\sqrt 2 \) và y = 1 vào bất phương trình ta được:

\(3\sqrt 2 + m - 7 \ge 0 \Leftrightarrow m \ge 7 - 3\sqrt 2 \)

Vậy với \(m \in \left[ {7 - 3\sqrt 2 ; + \infty } \right)\) thì bất phương trình 3x + my − 7 ≥ 0 có miền nghiệm chứa điểm A(\(\sqrt 2 \); 1).

Ta chọn phương án D.

Câu 3

Với giá trị nào của m thì điểm A(1 − m; m) không thuộc miền nghiệm của bất phương trình 2x − 3(y − x) > 4?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay