Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Ta có: n = 9.
Số trung bình cộng:
Phương sai:
= 26,91.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
1; 10; 11; 11; 12; 14; 16; 19; 19
Khi đó, khoảng biến thiên R = 19 – 1 = 18.
Vì n = 9 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 12.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 1; 10; 11; 11.
Vậy Q1 = (10 + 11) : 2 = 10,5.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 14; 16; 19; 19.
Vậy Q3 = (16 + 19) : 2 = 17,5.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 17,5 – 10,5 = 7.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 17,5 + 1,5.7 = 28
Hoặc x < Q1 − 1,5∆Q = 10,5 − 1,5.7 = 0
Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày liên tiếp (đơn vị: nghìn đồng).
a) Biết có 1 trong 10 ngày trên có sự bất thường trong giá cổ phiếu. Hãy tìm ngày đó và giải thích.
Câu 3:
Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày liên tiếp (đơn vị: °C).
a) Hãy viết mẫu số liệu thống kê nhiệt độ từ biểu đồ trên.
Câu 4:
Một kĩ thuật viên thống kê lại số lần máy bị lỗi từng ngày trong tháng 5/2021 ở bảng sau:
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu.
Câu 5:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
b)
Câu 6:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
Câu 7:
b) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó.
về câu hỏi!