Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
c) Ta có: n = 7.
Số trung bình cộng:
Phương sai:
= 1,41.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
6,1; 6,2; 6,2; 6,3; 6,7; 6,8; 9,7
Khi đó, khoảng biến thiên R = 9,7 – 6,1 = 3,6.
Vì n = 7 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 6,3.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 6,1; 6,2; 6,2.
Vậy Q1 = 6,2.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 6,7; 6,8; 9,7.
Vậy Q3 = 6,8.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 6,8 – 6,2 = 0,6.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 6,8 + 1,5.0,6 = 7,7
Hoặc x < Q1 − 1,5∆Q = 6,2 − 1,5.0,6 = 5,3
Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 9,7.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày liên tiếp (đơn vị: nghìn đồng).
a) Biết có 1 trong 10 ngày trên có sự bất thường trong giá cổ phiếu. Hãy tìm ngày đó và giải thích.
Câu 3:
Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày liên tiếp (đơn vị: °C).
a) Hãy viết mẫu số liệu thống kê nhiệt độ từ biểu đồ trên.
Câu 4:
Một kĩ thuật viên thống kê lại số lần máy bị lỗi từng ngày trong tháng 5/2021 ở bảng sau:
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu.
Câu 5:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
b)
Câu 6:
b) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó.
Câu 7:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
về câu hỏi!