Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
d) Ta có: n = 6.
Số trung bình cộng:
Phương sai:
= 0,059.
Sắp xếp mẫu số liệu theo thứ tự không giảm:
0,05; 0,35; 0,35; 0,38; 0,68; 0,79
Khi đó, khoảng biến thiên R = 0,79 – 0,05 = 0,74.
Vì n = 6 là số chẵn nên ta có tứ phân vị thứ hai
Q2 = (0,35 + 0,38) : 2 = 0,365.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 0,05; 0,35; 0,35.
Vậy Q1 = 0,35.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 0,38; 0,68; 0,79.
Vậy Q3 = 0,68.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 0,68 – 0,35 = 0,33.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 0,68 + 1,5.0,33 = 1,175
Hoặc x < Q1 − 1,5∆Q = 0,35 − 1,5.0,33 = −0,145.
Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày liên tiếp (đơn vị: nghìn đồng).
a) Biết có 1 trong 10 ngày trên có sự bất thường trong giá cổ phiếu. Hãy tìm ngày đó và giải thích.
Câu 3:
Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày liên tiếp (đơn vị: °C).
a) Hãy viết mẫu số liệu thống kê nhiệt độ từ biểu đồ trên.
Câu 4:
Một kĩ thuật viên thống kê lại số lần máy bị lỗi từng ngày trong tháng 5/2021 ở bảng sau:
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu.
Câu 5:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
b)
Câu 6:
Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu cho bởi bảng tần số sau:
a)
Câu 7:
b) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó.
về câu hỏi!