Câu hỏi:
23/08/2022 6,663Cho hệ bất phương trình: \(\left\{ \begin{array}{l}x + y - 2 \ge 0\\x - 3y + 3 < 0\end{array} \right..\) Chọn khẳng định đúng:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
• Xét cặp số (1; 2):
Ta có: \(\left\{ \begin{array}{l}1 + 2 - 2 = 1 \ge 0\\1 - 3.2 + 3 = - 2 < 0\end{array} \right.\) nên cặp số (1; 2) thỏa mãn đồng thời cả hai bất phương trình của hệ.
Do đó cặp số (1; 2) là nghiệm của hệ bất phương trình. Khi đó A sai.
• Xét cặp số \(\left( {\frac{3}{4};\frac{5}{4}} \right)\):
\(\left\{ \begin{array}{l}\frac{3}{4} + \frac{5}{4} - 2 = 0 \ge 0\\\frac{3}{4} - 3.\frac{5}{4} + 3 = 0\end{array} \right.\) nên cặp số \(\left( {\frac{3}{4};\frac{5}{4}} \right)\) không thỏa mãn đồng thời cả hai bất phương trình của hệ.
Do đó cặp số \(\left( {\frac{3}{4};\frac{5}{4}} \right)\) không là nghiệm của hệ bất phương trình nên miền nghiệm của hệ không chứa điểm \(\left( {\frac{3}{4};\frac{5}{4}} \right).\) Khi đó C sai.
• Miền nghiệm của hệ bất phương trình là miền không kể bờ là đường thẳng x – 3y + 3 = 0. Do đó B sai.
• Miền nghiệm của hệ bất phương trình là miền kể cả bờ là đường thẳng x + y – 2 = 0. Do đó miền nghiệm của hệ chứa tất cả các điểm nằm trên đường thẳng x + y – 2 = 0.
Khi đó D đúng.
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: \[\left\{ {\begin{array}{*{20}{c}}{0 \le y \le 4}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}y \ge 0\\y \le 4\end{array}\\{x \ge 0}\\{x - y - 1 \le 0}\\{x + 2y - 10 \le 0}\end{array}} \right.\]
Trên mặt phẳng Oxy:
• Biểu diễn miền nghiệm của bất phương trình: y ≥ 0.
Miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: y = 0) chứa điểm (0; 1).
• Biểu diễn miền nghiệm của bất phương trình: y ≤ 4.
Miền nghiệm của bất phương trình y ≤ 4 là nửa mặt phẳng (kể cả đường thẳng d2: y = 4) chứa điểm (0; 1).
• Biểu diễn miền nghiệm của bất phương trình: x ≥ 0.
Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d3: x = 0) chứa điểm (1; 0).
• Biểu diễn miền nghiệm của bất phương trình: x – y – 1 ≤ 0.
Vẽ đường thẳng d4: x – y – 1 = 0 đi qua hai điểm (0; –1) và (1; 0).
Xét điểm O(0; 0) ∉ d1, ta có: 0 – 0 – 1 = –1 < 0 nên miền nghiệm của bất phương trình x – y – 1 ≥ 0 là nửa mặt phẳng (kể cả bờ d4) chứa điểm O(0; 0).
• Biểu diễn miền nghiệm của bất phương trình: x + 2y – 10 ≤ 0.
Vẽ đường thẳng d5: x + 2y – 10 = 0 đi qua hai điểm (0; 5) và (10; 0).
Xét điểm O(0; 0) ∉ d1, ta có: 0 + 2.0 – 10 = –10 < 0 nên miền nghiệm của bất phương trình x + 2y – 10 ≤ 0 là nửa mặt phẳng (kể cả bờ d5) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2, d3, d4 và d5) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
Vậy miền nghiệm của hệ bất phương trình là miền ngũ giác.
Ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
• Xét điểm O(0; 0) ta có: \[\left\{ \begin{array}{l}2.0 + 3.0 + 6 = 6 \ge 0\\0 \le 0\\2.0 - 3.0 + 1 = 1 \ge 0\end{array} \right.\]
Nên cặp số (0; 0) thỏa mãn đồng thời cả ba bất phương trình của hệ.
Do đó miền nghiệm của hệ chứa gốc tọa độ O. Khi đó C là khẳng định đúng.
• Hệ bất phương trình \[\left\{ \begin{array}{l}2x + 3y + 6 \ge 0\\x \le 0\\2x - 3y + 1 \ge 0\end{array} \right.\] có miền nghiệm kể cả bờ 2x – 3y + 1 = 0.
Do đó D là khẳng định đúng.
• Biểu diễn miền nghiệm của hệ bất phương trình:
Miền nghiệm của bất phương trình 2x + 3y + 6 ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: 2x + 3y + 6 = 0) chứa điểm O(0; 0).
Miền nghiệm của bất phương trình x ≤ 0 là nửa mặt phẳng (kể cả đường thẳng d2: x = 0) chứa điểm (–1; 0).
Miền nghiệm của bất phương trình 2x – 3y + 1 ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d3: 2x – 3y + 1 = 0) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2, d3) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
Miền nghiệm là miền tam giác ABC với A(0; –2), \(B\left( {0;\frac{1}{3}} \right),\) \(C\left( { - \frac{7}{4}; - \frac{5}{6}} \right).\) Khi đó A là khẳng định đúng.
Vẽ đường thẳng y = –1 ta thấy đường thẳng y = –1 cắt cạnh AC tại D và cắt cạnh AB tại E và cắt miền trong tam giác ABC tại vô số điểm F. Do đó đường thẳng y = –1 cắt miền tam giác ABC tại vô số điểm.
Khi đó B là khẳng định sai.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận