Câu hỏi:
13/07/2024 3,277
Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2
1) Tính f(−1); f(3).
2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất.
Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2
1) Tính f(−1); f(3).
2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất.
Câu hỏi trong đề: Đề thi Học kì 2 Toán 9 chọn lọc, có đáp án !!
Quảng cáo
Trả lời:
1) + f(−1)
Thay x = −1 vào y = x2, ta được: f(−1) = (−1)2 = 1.
+ f(3)
Thay x = 3 vào y = x2, ta được: f(3) = 32 = 9.
Vậy f( – 1) = 1 và f(3) = 9.
2) Kẻ AH, MK, BI lần lượt vuông góc với Ox tại H, M, I ta được hình vẽ sau:

Khi đó AH = |yA| = 1; OH = |xA| = |-1| = 1;
OK = |xM| = |m|; MK = |yM| = m2;
OI = |xB| = 3; BI = |yB| = 9.
Suy ra: HK = |m + 1|; KI = OI – OK = |3 – m|;
HI = OH + OI = 1 + 3 = 4.
Ta có: S∆ABM = SAHIB – SAHKM – SMKIB
Ta có: Tứ giác AHIB, AHKM, MKIB là những hình thang vuông nên:
SAHIB = (AH + BI). HI = (1 + 9).4 = 20 (đvdt).
SAMKH = (AH + MK). HK = (1 + |yM|).|xM + 1| = (1 + m2).|m + 1|
SMKIB = (MK + BI). KI = (m2 + 9). |3 – m|
Þ SABM = 20 − (1 + m2).|m + 1| − (m2 + 9). |3 – m|
Do −1 < m < 3 nên , ∀m Î (−1;3)
Khi đó: SABM = 20 − (1 + m2).(m + 1) −
(m2 + 9). (3 – m)
= 20 − (m + 1 + m3 + m2) − (3m2 – m3 + 27 – 9m)
= 20 − (4m2 – 8m + 28)
Để diện tích của tam giác ABM đạt GTLN thì (4m2 – 8m + 28) đạt GTNN
Mà (4m2 – 8m + 28) = 4(m2 – 2m + 7) = 4(m2 – 2m + 1) + 24 = 4(m – 1)2 + 24 ≥ 24, ∀m
Dấu “=” xảy ra khi m = 1.
Vậy (4m2 – 8m + 28) đạt GTNN bằng 24 khi m = 1.
Vậy S∆ABM đạt GTLN bằng 8 khi m = 1.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D

Gọi O là tâm của hình vuông ABCD, E; F; K; G lần lượt là trung điểm của AD, DC, BC, AB.
Khi đó ta có OE = OF = OK = OG = . Hay O là tâm đường tròn nội tiếp hình vuông ABCD.
Vậy bán kính đường tròn nội tiếp hình vuông là R = .
Lời giải
Đáp án đúng là: D

Hình vuông ABCD nội tiếp đường tròn (O), O là tâm của hình vuông ABCD.
Vì ABCD là hình vuông nên 2 đường chéo vuông góc với nhau đồng thời chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường Þ OA ^ OB và OA = OB.
Þ ∆OAB vuông cân tại O.
Gọi R là bán kính của đường tròn ngoại tiếp (O), ta có
AC = AB= 8 Þ R = = = cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.