Câu hỏi:

13/07/2024 2,625

Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2

1) Tính f(−1); f(3).

2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) + f(−1)12

Thay x = −1 vào y = x2, ta được: f(−1) = (−1)2 = 1.

+ f(3)

Thay x = 3 vào y = x2, ta được: f(3) = 32 = 9.

Vậy f( – 1) = 1 và f(3) = 9.

2) Kẻ AH, MK, BI lần lượt vuông góc với Ox tại H, M, I ta được hình vẽ sau:

 Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2 1) Tính f(−1); f(3). 2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất. (ảnh 1)

Khi đó AH = |yA| = 1; OH = |xA| = |-1| = 1;

OK = |xM| = |m|; MK = |yM| = m2;

OI = |xB| = 3; BI = |yB| = 9.

Suy ra: HK = |m + 1|; KI = OI – OK = |3 – m|;

HI = OH + OI = 1 + 3 = 4.

Ta có: S∆ABM = SAHIB – SAHKM – SMKIB

Ta có: Tứ giác AHIB, AHKM, MKIB là những hình thang vuông nên:

SAHIB12(AH + BI). HI =  12(1 + 9).4 = 20 (đvdt).

SAMKH12 (AH + MK). HK = 12 (1 + |yM|).|xM + 1| =  12(1 + m2).|m + 1|

SMKIB12(MK + BI). KI = (m2 + 9). |3 – m|

Þ SABM = 20 −  12(1 + m2).|m + 1| −  12(m2 + 9). |3 – m|

Do −1 < m < 3 nên  |m+1|=m+1|3m|=3m, m Î (−1;3)

Khi đó: SABM = 20 − (1 + m2).(m + 1) − (m2 + 9). (3 – m)

= 20 −  12(m + 1 + m3 + m2) −12 (3m2 – m3 + 27 – 9m)

= 20 − 12(4m2 – 8m + 28)

Để diện tích của tam giác ABM đạt GTLN thì (4m2 – 8m + 28) đạt GTNN

Mà (4m2 – 8m + 28) = 4(m2 – 2m + 7) = 4(m2 – 2m + 1) + 24 = 4(m – 1)2 + 24 ≥ 24, m

Dấu “=” xảy ra khi m = 1.

Vậy (4m2 – 8m + 28) đạt GTNN bằng 24 khi m = 1.

Vậy S∆ABM đạt GTLN bằng 8 khi m = 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Bán kính đường tròn nội tiếp hình vuông có cạnh bằng a là

Xem đáp án » 22/08/2022 5,506

Câu 2:

Bán kính đường tròn ngoại tiếp hình vuông có cạnh bằng 8cm là

Xem đáp án » 22/08/2022 4,210

Câu 3:

Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao BD và CE của tam giác ABC cắt nhau tại H.

1) Tính  BDC^.

2) Chứng minh AEHD là tứ giác nội tiếp.

3) Các đường thẳng BD và CE cắt đường tròn (O) theo thứ tự tại P và Q (P khác B, Q khác C). Chứng minh HB.HP = HC.HQ.

4) Chứng minh OA vuông góc DE.

Xem đáp án » 13/07/2024 2,841

Câu 4:

Cho tứ giác ABCD nội tiếp đường tròn, khẳng định nào sau đây là đúng?

Xem đáp án » 24/08/2022 2,366

Câu 5:

Cặp số (x; y) nào sau đây là nghiệm phương trình x – 5y = −7?

Xem đáp án » 24/08/2022 1,809

Câu 6:

Trong mặt phẳng tọa độ Oxy, điểm nào dưới đây thuộc đồ thị hàm số y = x2?

Xem đáp án » 22/08/2022 1,501

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store