Câu hỏi:

13/07/2024 3,250

Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2

1) Tính f(−1); f(3).

2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) + f(−1)12

Thay x = −1 vào y = x2, ta được: f(−1) = (−1)2 = 1.

+ f(3)

Thay x = 3 vào y = x2, ta được: f(3) = 32 = 9.

Vậy f( – 1) = 1 và f(3) = 9.

2) Kẻ AH, MK, BI lần lượt vuông góc với Ox tại H, M, I ta được hình vẽ sau:

 Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2 1) Tính f(−1); f(3). 2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất. (ảnh 1)

Khi đó AH = |yA| = 1; OH = |xA| = |-1| = 1;

OK = |xM| = |m|; MK = |yM| = m2;

OI = |xB| = 3; BI = |yB| = 9.

Suy ra: HK = |m + 1|; KI = OI – OK = |3 – m|;

HI = OH + OI = 1 + 3 = 4.

Ta có: S∆ABM = SAHIB – SAHKM – SMKIB

Ta có: Tứ giác AHIB, AHKM, MKIB là những hình thang vuông nên:

SAHIB12(AH + BI). HI =  12(1 + 9).4 = 20 (đvdt).

SAMKH12 (AH + MK). HK = 12 (1 + |yM|).|xM + 1| =  12(1 + m2).|m + 1|

SMKIB12(MK + BI). KI = (m2 + 9). |3 – m|

Þ SABM = 20 −  12(1 + m2).|m + 1| −  12(m2 + 9). |3 – m|

Do −1 < m < 3 nên  |m+1|=m+1|3m|=3m, m Î (−1;3)

Khi đó: SABM = 20 − (1 + m2).(m + 1) − (m2 + 9). (3 – m)

= 20 −  12(m + 1 + m3 + m2) −12 (3m2 – m3 + 27 – 9m)

= 20 − 12(4m2 – 8m + 28)

Để diện tích của tam giác ABM đạt GTLN thì (4m2 – 8m + 28) đạt GTNN

Mà (4m2 – 8m + 28) = 4(m2 – 2m + 7) = 4(m2 – 2m + 1) + 24 = 4(m – 1)2 + 24 ≥ 24, m

Dấu “=” xảy ra khi m = 1.

Vậy (4m2 – 8m + 28) đạt GTNN bằng 24 khi m = 1.

Vậy S∆ABM đạt GTLN bằng 8 khi m = 1.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

 Bán kính đường tròn nội tiếp hình vuông có cạnh bằng a là   (ảnh 1)

Gọi O là tâm của hình vuông ABCD, E; F; K; G lần lượt là trung điểm của AD, DC, BC, AB.

Khi đó ta có OE = OF = OK = OG = a2. Hay O là tâm đường tròn nội tiếp hình vuông ABCD.

Vậy bán kính đường tròn nội tiếp hình vuông là R = a2.

Lời giải

Đáp án đúng là: D

 
Bán kính đường tròn ngoại tiếp hình vuông có cạnh bằng 8cm là  (ảnh 1)

Hình vuông ABCD nội tiếp đường tròn (O), O là tâm của hình vuông ABCD.

Vì ABCD là hình vuông nên 2 đường chéo vuông góc với nhau đồng thời chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường Þ OA ^ OB và OA = OB.

Þ ∆OAB vuông cân tại O.

Gọi R là bán kính của đường tròn ngoại tiếp (O), ta có

AC = AB2= 82 Þ R =AB2 =8242cm.

Câu 4

Cho tứ giác ABCD nội tiếp đường tròn, khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cặp số (x; y) nào sau đây là nghiệm phương trình x – 5y = −7?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay