Câu hỏi:

22/08/2022 7,974

Bán kính đường tròn ngoại tiếp hình vuông có cạnh bằng 8cm là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

 
Bán kính đường tròn ngoại tiếp hình vuông có cạnh bằng 8cm là  (ảnh 1)

Hình vuông ABCD nội tiếp đường tròn (O), O là tâm của hình vuông ABCD.

Vì ABCD là hình vuông nên 2 đường chéo vuông góc với nhau đồng thời chúng bằng nhau và cắt nhau tại trung điểm của mỗi đường Þ OA ^ OB và OA = OB.

Þ ∆OAB vuông cân tại O.

Gọi R là bán kính của đường tròn ngoại tiếp (O), ta có

AC = AB2= 82 Þ R =AB2 =8242cm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

 Bán kính đường tròn nội tiếp hình vuông có cạnh bằng a là   (ảnh 1)

Gọi O là tâm của hình vuông ABCD, E; F; K; G lần lượt là trung điểm của AD, DC, BC, AB.

Khi đó ta có OE = OF = OK = OG = a2. Hay O là tâm đường tròn nội tiếp hình vuông ABCD.

Vậy bán kính đường tròn nội tiếp hình vuông là R = a2.

Lời giải

Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao BD và CE của tam giác ABC cắt nhau tại H. 1) Tính  BDC   (ảnh 1)

a) Ta có BD ^ AC (gt) Þ  BDC^= 90°

b) Ta có

CE ^ AB (gt) Þ  AEC^ = 90°

BD ^ AC (gt) Þ BDA^ = 90°

Þ AEC^+BDA^= 180°

Þ AEHD là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng 180°).

3) Xét BHQ và CHP có:

 BHQ^=CHP^(Hai góc đổi đỉnh)

 BQH^=CPH^(Hai góc nội tiếp cùng chắn cung BC của đường tròn (O)).

Nên BHQ  CHP (g.g)

Þ  BHCH=HQHPÞ HB.HP = HC.HQ

4) Ta có

  BDC^=BEC^= 90° (chứng minh trên)

Mà hai góc BDC^  và  BEC^ cùng nhìn đoạn thẳng BC dưới một góc vuông

Vậy tứ giác BCDE nội tiếp đường tròn đường kính BC.

Þ BDE^=BCQ^ (góc nội tiếp cùng chắn cung BE của đường tròn ngoại tiếp tứ giác BCDE) (1).

Có  BCQ^=QPB^(góc nội tiếp cùng chắn cung BQ của đường tròn (O)) (2).

Từ (1) và (2) Þ  QPB^=BDE^

Mà hai góc này ở vị trí đồng vị Þ PQ // DE (*).

Ta có  DCE^=DBE^(góc nội tiếp cùng chắn cung DE của đường tròn nội tiếp tứ giác BCDE).

Hay  ACQ^=ABP^ Û AP = AQ (3).

Mặt khác: OP = OQ (cùng là bán kính của đường tròn (O)) (4).

Từ (3) và (4) Þ OA là đường trung trực của đoạn thẳng PQ Þ OA ^ PQ (*)(*).

Từ (*) và (*)(*) suy ra OA ^ DE (đpcm).

Câu 3

Cho tứ giác ABCD nội tiếp đường tròn, khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cặp số (x; y) nào sau đây là nghiệm phương trình x – 5y = −7?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay