Câu hỏi:
13/07/2024 1,261Cho a, b, c là các số dương thỏa mãn (a + b + c)abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = .
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
= a2 − 2
a3 + 2b3 = a3 + b3 + b3 ≥ Þ a3 + 2b3 ≥ 3ab2
Þ ≤ Þ ≤
Þ a2 − 2 ≥ a2 − ab Þ ≥ a2 − ab
Chứng minh tương tự
≥ b2 − bc, ≥ c2 − ca.
Từ đây ta có S ≥ a2 + b2 + c2 − ab − bc − ca
= [(a – b)2 + (b – c)2 + (c – a)2] + (ab + bc + ca)
Þ P ≥ (ab + bc + ca)
Áp dụng bất đẳng thức (x + y + z)2 ≥ 3(xy + yz + zx), ta có:
(ab + bc + ca)2 ≥ 3 Þ ab + bc + ca ≥
Þ P ≥ . Đẳng thức xảy ra khi và chỉ khi a = b = c =
Vậy min S = tại (a;b;c) = .CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao BD và CE của tam giác ABC cắt nhau tại H.
1) Tính .
2) Chứng minh AEHD là tứ giác nội tiếp.
3) Các đường thẳng BD và CE cắt đường tròn (O) theo thứ tự tại P và Q (P khác B, Q khác C). Chứng minh HB.HP = HC.HQ.
4) Chứng minh OA vuông góc DE.
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2
1) Tính f(−1); f(3).
2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất.
Câu 5:
Cho tứ giác ABCD nội tiếp đường tròn, khẳng định nào sau đây là đúng?
Câu 7:
Trong mặt phẳng tọa độ Oxy, điểm nào dưới đây thuộc đồ thị hàm số y = x2?
về câu hỏi!