Câu hỏi:
13/07/2024 2,813Cho tam giác nhọn ABC nội tiếp đường tròn (O), các đường cao BD và CE của tam giác ABC cắt nhau tại H.
1) Tính .
2) Chứng minh AEHD là tứ giác nội tiếp.
3) Các đường thẳng BD và CE cắt đường tròn (O) theo thứ tự tại P và Q (P khác B, Q khác C). Chứng minh HB.HP = HC.HQ.
4) Chứng minh OA vuông góc DE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có BD ^ AC (gt) Þ = 90°
b) Ta có
CE ^ AB (gt) Þ = 90°
BD ^ AC (gt) Þ = 90°
Þ = 180°
Þ AEHD là tứ giác nội tiếp (tứ giác có tổng hai góc đối bằng 180°).
3) Xét ∆BHQ và ∆CHP có:
(Hai góc đổi đỉnh)
(Hai góc nội tiếp cùng chắn cung BC của đường tròn (O)).
Nên ∆BHQ ∆CHP (g.g)
Þ Þ HB.HP = HC.HQ
4) Ta có
= 90° (chứng minh trên)
Mà hai góc và cùng nhìn đoạn thẳng BC dưới một góc vuông
Vậy tứ giác BCDE nội tiếp đường tròn đường kính BC.
Þ (góc nội tiếp cùng chắn cung BE của đường tròn ngoại tiếp tứ giác BCDE) (1).
Có (góc nội tiếp cùng chắn cung BQ của đường tròn (O)) (2).
Từ (1) và (2) Þ
Mà hai góc này ở vị trí đồng vị Þ PQ // DE (*).
Ta có (góc nội tiếp cùng chắn cung DE của đường tròn nội tiếp tứ giác BCDE).
Hay Û AP = AQ (3).
Mặt khác: OP = OQ (cùng là bán kính của đường tròn (O)) (4).
Từ (3) và (4) Þ OA là đường trung trực của đoạn thẳng PQ Þ OA ^ PQ (*)(*).
Từ (*) và (*)(*) suy ra OA ^ DE (đpcm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho đồ thị hàm số y = f(x) = x2
1) Tính f(−1); f(3).
2) Cho A(−1; 1), B(3; 9) nằm trên đồ thị hàm y = x2. Gọi M là điểm thay đổi trên đồ thị hàm số y = x2 và có hoành độ là m (−1 < m < 3). Tìm m để tam giác ABM có diện tích lớn nhất.
Câu 4:
Cho tứ giác ABCD nội tiếp đường tròn, khẳng định nào sau đây là đúng?
Câu 6:
Trong mặt phẳng tọa độ Oxy, điểm nào dưới đây thuộc đồ thị hàm số y = x2?
về câu hỏi!