Câu hỏi:
24/08/2022 648Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ:
Đặt ∆ = b2 – 4ac. Tìm dấu của a và ∆.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Quan sát đồ thị, ta thấy parabol có bề lõm quay lên trên nên a > 0.
Lại có đồ thị cắt trục Ox tại hai điểm phân biệt (cụ thể là tại x = 1 và x = 4) nên phương trình ax2 + bx + c = 0 có hai nghiệm x1, x2.
Do đó ∆ > 0.
Vậy a > 0, ∆ > 0.
Do đó ta chọn phương án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số đã cho có dạng y = ax2 + bx + c, với a = 1, b = 2, c = –3.
Trục đối xứng của hàm số đã cho là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{2}{{2.1}} = - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy).
Vậy ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số đã cho có dạng y = ax2 + bx + c, với a = –1, b = –4, c = 3.
Vì b = –4 nên ta có b’ = –2.
∆’ = b’2 – ac = (–2)2 – (–1).3 = 7.
Đỉnh S có tọa độ:
⦁ \({x_S} = - \frac{{b'}}{a} = - \frac{{ - 2}}{{ - 1}} = - 2\);
⦁ \({y_S} = - \frac{{\Delta '}}{a} = - \frac{7}{{ - 1}} = 7\).
Suy ra tọa độ đỉnh S(–2; 7).
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.